Header files and Input Files

There are two types of ‘input’ files you can use to define parameters. Each of them has its own advantages/disadvantages.

Header Files:

Text file with .h extension, same format as regular code, for example: param.h:

c=============== include file ‘param.h’ =================

c define certain parameters:

c diff_coeff = diffusion coefficient (m^2/s)

c nz = number of depths

c chl_prof = chl profile with nz points (mg Chl/m^3) (not

c really a parameter, only for this example)

real diff_coeff

integer nz

parameter (diff_coeff = 2., nz= 100)

real chl_prof(nz)

common /param/ diff_coeff, nz, chl_prof

· ‘Common’ statement is optional, see below.

· Good practice to give ‘long’ explanation of variables and to include units

· Called in the main program or subroutines in the declarations section (where you declare variables real, integer…) as follows:

include ‘param.h’

· Note that the pound sign (#) is in the first column.

· Will be ‘inserted’ at the position where you include it at compile time (so if you change the header file you have to recompile)

· No need to list it when you compile (ie. no need to do: f77 main.F param.h)

· If you need the same variables in several different subroutines, using header files saves you some coding plus prevents typing mistakes. You might consider making the variables global (like I did above with the common statement).

Input Files:

Text files with any extension, for example param.in

Three steps:

1. Declare variables in main code

2. Define a ‘name_list’ in the main code which list constants in the input file (comes after variable declaration section)

3. Open file and read in constants according to the name_list format

Example:

Main program code (your .F file) reading input file param.in:

integer nz

real diff_coeff

namelist /param_in/ nz, diff_coeff

open(unit = 20,file='param.in')

read(20, param_in)

 close(20)

Input file, param.in

¶m_in nz=100, diff_coeff=2., &end

· Should start with &name_list name, and end with ‘, &end’. Variables are separated by commas. Input file is ‘free format’, column positions doesn’t matter, so this is ok too:

Input file, param.in

¶m_in

nz = 100 ,

diff_coeff = 2. ,

&end

· Note that you can’t define array sizes (since all variables must have been defined already at the time the input file is read in).

· Will be read in at run time. So no need to recompile code when you make changes in the input file.

· Best for reading in constants/parameters. I wouldn’t for example use nz in the above example because there are probably other arrays depended on the value of nz. But if you want to test sensitivity of diff_coeff, it is convenient to change it in the input file and re-run the program without recompiling it first.

· You can also pass on values of variable at runtime. Example: a.out 20., 30.

It can be read into the appropriate variable with the getarg function.

