Fortran Lecture 2
1. Formatting output:

Print statement:

 print *, ‘My grandma is ‘, age

 print 9000, age

9000 format (‘My grandma is ‘, i3)

a
a10 10 characters

i
i4 integer 4 columns

f
f10.3 floating point with 3 decim, total 10 cols xxxxxx.xxx

x
5x five spaces

e
e10.3 exp. notation, total 10 columns, xxx.xxxExx

2. Subprograms

Functions and subroutines

Stand-alone programs, can share or re-use.

Functions:

Built-in functions:

sin,asin…
calculates (arc)sine, Example: a=sin(b)

sqrt
square root, a=sqrt(b)

float
convert to real data type

exp
exponential, ex, Example: a=exp(b) [24 = 2**4]

alog
natural log

alog10 base10 log

abs
absolute value

mod
integer remainder of two numbers, Example: check for leap year:

year = 2000

leap = mod(year, 4)

if (leap .eq. 0) then

print *, ‘leap year’

ndays = 366

else

print *, ‘no leap year’

ndays = 365

endif

int/nint
converts to integer (int = always rounding down, nint = nearest integer)

int(0.9) = 0

nint(0.9) = 1

Create your own function!

Function returns one variable, same as above, e.g. a=sqrt(4.0)

Recreate the abs function:

Contents of main program myfirstfun.F:

program myfirstfun

c coding my first function myabs

implicit none

real a, apos

real myabs

a = -5.

apos = myabs(a)

print *, ‘a = ‘, a, ‘, apos = ‘, apos

end

Function is stored in separate file, myabs.F

Contens of sourcecode file myabs.F

real function myabs(x)

c this function returns the absolute value

implicit none

real x

if (x .lt. 0.) then

myabs = -1. * x

else

myabs = x

endif

return

end

Compile:

f77 –o myfirstfun myfirstfun.F myabs.F

Note that myabs occurs at least 4 times, declared in main program, called in main program, first line of function, used in the function.

Can pass more than one array - example of a function that calculates the sum of two numbers

Contents of sourcefile mysecondfun.F

program mysecondfun

c trying to code my second function

implicit none

real a,b,tot

real sum

a = 5.

b = 3.

tot = sum(a,b)

print *, a, ‘ + ‘, b, ‘ = ‘, tot

end

Function is stored in separate file, sum.F:

real function sum(x,y)

c this function returns the sum of two numbers

implicit none

real x,y

sum = x + y

return

end

Subroutines:

More versatile than function. With function only one number is returned, with subroutines you can pass back and forth many variables.

program myfirstsub

c using my first subroutine

implicit none

real a, b, tot

a = 5.

b = 3.

call sum(a,b,tot)

print *, a, ‘ + ‘, b, ‘ = ‘, tot

end

Subroutine sum.F:

subroutine sum(x,y,z)

c this subroutine calculates the sum (z) of x and y

implicit none

real x,y,z

z = x + y

return

end

Passing arrays:

program someprog

real a(100)

call somesub(a)

subroutine somesub(a)

real a(100)

…

Not really portable – works only if input array has size 100. Better: pass on array dimensions as well. Example:

program mainprog

implicit none

real a(100, 10)

call somesub(a, 100, 10)

subroutine somesub(x,m,n)

real x(m,n)

3. Local / Global :

All variables in fortran are local:

Variables with same name do not have same data type/value/dimensions in functions/subroutines.

On the other hand, value of variables passed on in subroutines or functions can change, even when variable name in subroutine is different.

Example:

Main program:

real a,x

a = 5.

x = 10.

print *, ‘Before calling sub:’, a,x

call somesub(a)

print *, ‘After sub:’, a,x

subroutine somesub(x)

real a,x

print *, ‘Inside sub bf adding 3: ‘, a,x

a = a+3.

x = x+3.

print *, ‘Inside sub af adding 3: ‘, a,x

return

end

Use ‘common block’ to make variables global. Advantage: don’t have to pass them on in subroutine. Disadvantage: makes a subroutine less portable.

real a,x

common a

a = 5.

x = 8.

print *, ‘Before calling sub:’, a,x

call somesub

print *, ‘After sub:’, a,x

subroutine somesub

real a,x

common a

print *, ‘Inside sub bf adding 3: ‘, a,x

a = a+3.

x = x+3.

print *, ‘Inside sub af adding 3: ‘, a,x

return

end

Homework:

1. Write a program that does the following:

Input: 5 random numbers, read into an array

Print the numbers to the screen

Print the numbers in reverse order

Sort the numbers from small to large using the bubble sort algorithm.

The bubble sort algorithm - compare the first and second value in your array and switch them if they are out of order. Do the same for the second and third array value, and so on. It is unlikely that the numbers are sorted yet, so start another pass. The number of passes required to ensure sorting will be one less than the number of numbers to be sorted.

