S5

Chapter 2

Getting Started

2.1 INTRODUCTION

in the last chapter, we presented the basic building blocks requited for programming. So
now it is time to introduce the specific details needed to construct simple Fortran programs using
come of these basic ideas. To allow you to write your first program, we need to discuss four items:

How a program is organized

The different types of data, consiants, and variables

The assighment statement as 8 means of calculating and storing data
Simple input and output

¢ .

We will also review selected library functions for performing common mathemaiical operations and
debugging tips. When you complete this chapter, you should be able to write a simple program
consisting of input, sequential calculations and cutput to 2 terminal sereen.

2.2 PROGRAM ORGANIZATION

A program is constructed with a text editor, which is nothing more than a simple word-

processor. The organization of each program line must follow very specific rules and you must be
very careful to follow them. For instance, the various columns have significance as summarized
in the table below, Columns 1 through 5 are reserved for statement labels and column 6 is reserved
for a contimuation character that indicates that the current line is a continuation of the previous line.
Colummps 7 through 72 store the Fortran commands. Finalty, columns 73 and higher are ignored
and can be used for comuments. Sometimes, you may wish to document various parts of your
program. This can be done by using Corments, which are created by placing the letter C or an
asterisk (*) in column 1. Any text that follows on that line will be ignored.

Column Purpose
1 . Cor*in column indicates a comment line
1-5 ' Siatement labels that are used 1o identify specific lines
6 Continuation character (any character is allowed)
T—72 Foriran program statements _
73— Everything that follows is ignored; can be used for short comments

38

Y

i

(

CHAP.2] GETTING STARTED 39
EXAMPLE 2.1
Colunm—~ 10 20 30 40 50 6(5

| 1 | i R

C This Fortran program calcul ’
S oals fortran ¥ ates the area -

PRINT *, ‘ENTER HEIGHT: °

PRINT *, ‘ENTER BASE: /
REARD *, B
A=0.5*%H+*E
c
g The follewing demonstrates the use of a continuatior line
PRIRT *, . .
1 TAREA= ', A

g The above two lines are the same as PRINT *, ‘ARER= ', A

END

The END statement indicates the end of the main program. Later on, we will introduce the
concept of subpr‘ogram, which can be considered as separate pro,grams. Therefore, the
END statement is needed to divide the different parts, or modules. Without the),END
statement, we would have no way of knowing where one module ends and next one begins.

Optionaily, a i:rogra.m may start with the PROGRAM n

» a vith dme statement, where you can
subsut‘ute a conve'ment‘label for rame that indicates the program function. The sole purposi of this
name is to make it easier for you to recognize each program at a later date.

EXAMPLE 2.2

g The program name (AREAOFCIRCLE) suggests its use

c FROGRAM AREAOFCIRCLE

g This example calculates the area of a circle,

PRINT *, ’Enter Circle Radius’
REMD *, R N '
A= 3.,141¢ * R * R

ERINT *, 'BArea of circle is ', A
ERD

2.3 DATA TYPES AND INTEGER CONSTANTS

Fortran 77 comtains six intrinsic data types that are bui i i

Fortran 77 ¢ trin ¢ built automatically into the language.
Thise are dmded} Ento two catggones: numerical and nonnumerical. Numerical types are ift‘:gger
real, double precision, and complex. Nonmumerical types are character and logical. In this chapter
we are mostly concerned with the numerical types. '

40

Integer Constants

Integer values are those that repfesent whole
represented on & computer depends specificaily on the

GE..TTING STARTED

[CHAP. 2

numbers. The range of values that can be
computer. However, a typical range is from

331 4+932-1 — 1 (approximately $£2%10°% for a 32-bit computer.

EXAMPLE 2.3

The following illustrate correct and incorrect ¢xamp!

Jes of integer constants:

Valid Examples - Invalid Examples Comment

-999 Negative sign required

+10 Plus sign optional .

111 111 111 Spaces ignored - useful for large numbers
111,111,111 No commas
174.00 No decimal points in integer numbers
—71/2 No fractions

Real and Double Precision Constants

The second type of numerical constant is call
as two components: & mantissa ranging between
appropriate power of 10, Real constants are those

ed real. Real numbers are stored in the ‘computer
0.1 and 1.0 and an exponent that indlc?t.es the
that we think of as fractional pumbers which may

be positive or negative and always have a decimal point.

EXAMPLE 2.4

The fol]owiné examples illustrate valid and invalid

uses of real constants:

Valid Examples Invalid Bxamples Comsnent
1.4 Negative required
-i 152 7 Plus sign optional)
0.0000034 Small numbers permitted
23 4560 Spaces ignored
' o $1.23 Only numbers permitted (no $)))
0 . Reguires a decimal point, otherwise this
is an integer
123,456.00 No commas

e

CHAP. 2] GETTING STARTED . Co41

Real constants can also be used with scientific notation. Recall that this is a useful method for
noting very large or very small numbers. It relies on the use of 4 mantissa between 0.1 and 1.0 and
an exponent that is a power of 10 and given by <mantissa> X 10 <expenent> The limit of
accuracy of Teal constants is approximately seven digits with 2 magnitude from 10% 10 10%38,

EXAMPLE 2.5 -

The following examples show the use of real constants using scientific notation:

Valid Examples Invalid Examples Cormment

0.6023E24 Avogadro’s number. 6.023 x 107

—0.123624 Negative mantissa permitted

0.123E-24 7 Negative exponent permitted

0.0ED Zero! '

1E2 Decimal point not required
0.1E—12.5 Exponent must be integer
0.1E—123 Value too small on most computers
0.1E+123 Value too large on most computers

If more than 7 digits of accuracy are required, you can use a double precision constant,
which is accurate to 14 to 16 decimal places, depending on the machine. Double precision is simple
to use. Instead of using E for the exponent, double precision simply substitutes the letter D,
EXAMPLE 2.6

The following examples illustrate double precision constants using scientific notation:

Valid Examples Invalid Examples Comment
0.0D0 " Double precision form of zero
0.23D-94 ' Double precision will give greater range

0.123456789E23 Not double precision! Extra digits ignored

A word of caution: double precision numbers require two to fen times the computationa]
time compared to single precision real numbers. Therefore, you should be careful to use
double precision only when absolutely required.

42 GETTING STARTED _ [CHAP, 2 | CHAP. 2] GETTING STARTED
43

Complex Constants
We often need to use complex numbers cuch-as 4++37, which contain real and imaginary ‘ EXAMPLE 2.8
ork withi imaginary numbers Programmers have developed a i .
i Here are some commonly encountered examples of character constants:

parts. Since computers cannot Wi
convention where a complex constant is represented by two real components. %
Fortran representation: { REAL ., REAL,)
Algebraic representation: real |t i (real) Valid Examples Invalid Examples Comment
The first number (REAL,) Tepresents the real part of the complex numbet, and the second ‘Helen’ .
auraber (REAL,) represents the imaginary part ¢ = —1), The rules for complex constants are not 112345 Mixing upper/lower case OK
standard for Fortran 77, yet most commercial versions of the Foriran 77 language use 2 similar set T°M 0K’ Al numbers OK
of rules in defining complex data. The following example summarizes these rules. I you ;“ﬂm an apostrophe inside the
single quotes, you must use two
EXAMPLE 2.7 "Helen® apostrophes. Result is I'M OK.
elen Must use single quotes (apostrophe)
Here are some examples of cormmonly encountered complex constants: ?Ielen , Missing quote marks
1% NY Rlegal character (V)

5 .
ite;:;;:;;g]tﬁ ttc; cc;nr?.lse ﬂ;-::u cha.rac.ter constant ’12'_’{4‘ with its numerical counterpart 1234, Wiiile
it 1o boseld nmn% ‘orm mathematical operations with numerical constants, you cannot do the same
mg v ers stored as character constants. For example, you can add 123 to 456 (both
erical constants), buit you cannot write '123" + '456°, since these are character constants °

Valid Examples Tnvalid Examples Comment

Either component may be negative

Positive sign is aptional

Exponential format is permitted
{1.23D-128, 3.45) Both components must match in precision
(1,2) Integers not allowed

(1.23,-3.45)
(+1.23, 0.0) tants
(1.23E-2, 3.45) Logieal Constan
e m'll;l:;e :’:nal intriqsic data.type is the logicai constant, which can take on only two values, Thus
- - (ng t::hrz us;:agﬁh since tl;e) o'x;‘iy allowed values of logical constants are TRUiE ami
: ALSE. te t e periods). The role of the logical i y !

in the following chapters when we discuss control stmcﬁlres.constMt illbe made more appaert

ally part of the Fortran 77 standard. However, -almost all

Complex pumbets are 1ot offici;
so-that there are few problems in using ther.

compilers support them as extensions,
mP i . EXAMPLE 2.9
Character Constants

‘ .) Here are some examples of common uses of logical constants:
There are occasions when we need to work with nonnumerical data, which cannot be handled - :
with the data types just discussed, Examples would be data such as names and addresses.
Accordingly, we will use 2 different type of constant, the character constant. A character constant

is any set of the aliowed symbols defined below and enclosed in single quote marks (7).

Valid Examples Invafid Examples Comment

Letters of the alphabet {uppet- or lower-case)
Numbers 0 through 9

Special characters + —().,*1="%
Blank space :

[True. i
The . Mixed case is acceptable
T[‘\LSE Requires periods (FALSE.)
.T.) Must spell out complete word

Even though you can create symbols such as © on your compuer, Fortran will not accept them.

44 GETTING STARTED [CHAP. 2 CHAP S
' -2 GETTING STARTED
: : 45
2.4 VARIABLES AND SIMPLE INPUT/OUTPUT . EXAMPLE 2.11

Variables provide a means by which you can manipulate data. By using input and output
statements, variables become apother way by which you can inttoduce data into your program.
‘When you studied algebra, you learned that variables could be used to represent a quantity ina
formulz. In programming, vatiables have this function aiso. However, we also use variables to

Here are some common forms of variable names:

represent Memory in the computer. The following example is a program that requests the radivs . .
of a circle and returns its circumference and area. - V§11d Examples Invalid Examples Comment
EXAMPLE 2.10 %

OK, bur not very illustrative

Below is a simple program to compute the area and circumference of a circle of radius r. In TAXDUE Better. since it describes i .
the progrant, the variables used are PL, AREA, CIRCUM, and R, Note that we (ry to chiooss TEMP1 O 10 ";’;Cf:: escribes its function
variable names that indicate their function in the program. AMT DUE OK, spaces ‘;’1 rgl‘ fgﬁﬁd J;Hmbers
Amt Bue , P d re
PROGRAM AREAQFCIRCLE - Same as previous example, since lower
¢ The following statements request the user to type in case i treated the same as upper case
¢ a value of the radius in Foriran
PRTNT * , 'Enter circle radius’ AMOUNTDUE Too many charasters {max of 6)
co F;:ElzlAD r* ai Rs .o fed in, the arvea is calculated gggEBéD {llegal character (5)
nce the radius is fed 1n, e area i a ;
PI = 3.1416 Must start with a letter
AREAR = PL * R * R
CIRCUM=2*PI*R
¢ The value of the area is now printed cut .
PRINT * , ‘Area of cirele is ', AREA .)
Implicit Data Typing

PRINT * , 'Circumference of circle is ', CIRCUM
END

When we execute this program, the following sequence of svents will occur:

In the previous sections, we discussed the si i
s six basic data types, but we did net discuss h
2—; ;i;;t:ewcgsml;fcr l}:::; ti) dfit"me the variables, With constants, it was obvious what data type e;cwh
. For example, if a number had a deciroal point it was real, and if it had i
nstar 4 : . no decimal
point, it was treated as an integer, and so forth. But with variables we must develop another way.

Enter circle radius (Printed by computer — line #4) .
s (Value typed in by user —line #5) With frclilrtran._aw;e have two options, implicit or explicit typing.
Area of circle is 78.54 (Printed by computer — line #11y e variables in Example 2.10 were implicitly defined, which means that each was assigned

Circumference of circle is 31.416 {Printed by computer — line #12)

The value of R was -entered into the program with 2 READ Statement and PI was given a
value by using a real constant. AREA and CIRCUM were catculated by using simple
mathematical expressions, Finally, the calculated values of AREA and CIRCUM were
displayed at the terminal screen by using the two PRINT statements in lines 11 and 12.

' When you give variables their names, try to choose names that describe their function within
the program, The yules for defining Fortran 77 variable names are a8 follows:

to 4 data type based on the first letter of the variable name and the following rules:

Varzlable names that begin with the letters A—H or 0—Z are real,
Variables names that begin with the letters I—N are integer. T

EXAWLE 2.12
" Here are some examples of implicit typing:

) Variable Type Variable Type

& Names are | to 6 characters long -

e Only letters (A — Z) and numbers (0 — 9) are atlowed R Real CIRCUM Real

® First character must be a letter Pl Real LENGTH Integer
e Upper/lower case are equivalent AREA Real : ICOUNT Integer
® Blank spaces are ignored

46 GETTING STARTED ' [CHAP. 2

Explicit Data Typing

Implicit typing rutes make it easy e define whether variables will be real or integer. But
these rules do not apply to complex, character of logical variables, To use these types, you must
use explicit typing rules. Explicit typing is simply the procedure of specifying how to treat each
variable, These rules are also used if you want to override the implicit typing for integers and reals.
i Ta declare a variable to be a specific type, enter the type followed by a list of the variables
{ to be so treated, with each variable separated by a comma. This so-called declaration starement
must come before any executable statement where some sort of processing takes place. There may
be several declaration statements at the beginning of the program, and their form will always be;

TYPE variablel , varigble2, . . .

EXAMPLE 2,13 -

" Here are some examples of explicit typing:

Declaration Statement Resuit

REALX,Y,Z Declares X, Y, and Z as a real variables

REAL LENGTH Defines LENGTH as a real variable

INTEGER COUNT | Defines COUNT as an integer variable
CHARACTER GRADE Defines GRADE as a character variable of length 1
CHARACTER*20 NAME Defines NAME as a character variable of length 20
COMPLEX PHASE Defines PHASE as a complex variable

LOGICAL YESNO Defines YESNO as a logical variable

DOUBLE PRECISION X Defines X as a double precision variable

CHARACTER A¥10, B¥20 Defines A as a character variable of length 10 and B as a
) character variable also, but of length 20

The following example shows a full program with explicit variable typing to define the several
variables.
EXAMPLE 2.14

The following program is similar to
now explicitly stated:

Example 2.10, except that the types of the variables are

PROGRAM AREAQOFCIRCLE
¢ The following statements requests the user Lo type in
¢ a value of the radius

REAL R, PI, AREA, CIRCUM

PRINT * , ‘Enter cirecle radius’
(Program continues on next page)

CHAP. 2] ' GETTING STARTED 47

READ * , R
C Cnce the radius is i i
fhe radius fed in, the area is calculated
AREA = PI * R * R
CIRCOM = 2 * PI * R '
C The value of the area is now printed out

gg%gg * , ‘Area of circle is ’, AREA
. iy . A
PRT ' Clrcumference of circle is ’, CIRCUM

Simple Input and Output

becn g‘;ﬁﬁgﬁ: retill:ltisre the u;er to enter data into the program. And once calculations have
, res) xst be sent to some sort of display devi
These two functions are known as in ey e 10 o have aitases soon
put and output, or collectively as I/0. We hav
I 8 . e alte:

Z:lfc?%fsst ?[: If(t) egl E:f]a;npif: 2.10. For the purpose of this section, only free formatted out;:{' (s:lzg
bl rected) will be prese?nted. and we will assume that all I/O wilk be at the terminal screen

'© input z value to a variable, we use the READ * statement with the general form: '

READ *, variablel, variable2, . . .

To display the value of a variable or vari
.or variables i TE! }
tommant s gonesal fonm e on the terminal screen, we use the PRINT *

PRINT *, variablel, variableZ, . . .

Character constants can be included in the ow i :
; ; ut list of th * i
string to be printed inside single quotation nwrtfcs ‘ ¢ PRINT wmm@d, Y plncing the

EXAMPLE 2.15

The following example reads in a person’ i
st by i person’s name and age in years. It then converts the age

¢ h dPROlGRAM AGEINMONTHS
e declaration statement mist com i
CHARACTER*10 NAME e first
. REAL AGEYRS, AGEMTH
C Here ;;I;%aefe 'wEe dinput the person's name and age
)) nter your name and i
o READ *, NAME, AGEYRS your age in years’
ow we cenvert the age from yea i
S AGEMTH = AGEYRS * 12 ¥5a%s into months
€ Print out the results

DPRINT *, NAME, * i 3i .
o f . is approximately ', AGEMTH, ' months olg’

‘ This is how the input and output would appear on the CRT screen:

48 GETTING STARTED [CHAP. 2
Enter your mame and your age in years (Prompt from line f6)
Martin C., 32 (Enteredby user; note apostrophes)
Martin C. is approximately 484,000 months old (Printed by compuier. - from line #11)

Note that in the output produced by the computer, any umused charactexs in NAME are given

plank spaces. For example, when the name was entered, it contained only 9 characters. So,
that has not been

when the computer goes to print out the name, there is an extra space
filled., In such cases, the computer will pad the variable with blank spaces.

2.5 ASSIGNMENT STATEMENTS, EXPRESSIONS, AND HIERARCHY

The assignment statement is the primary means of storing data in variables. We have seen
2 pumber of simple examples of assignment statements in the » AREAOECIRCLE" program

(Exarple 2,103 and the » AGEINMONTHS" program (Example 2.15). As the name assignment

statement implies, we are telling the computer 0. assign 4 value to & given variable. The general

forn of the assignment statement is:

Target « Value from an expression

The interpretation of this statement is "The tazget receives a value obtained from the expression.”

The way this is mplemented in Foriran is:

Variable = Value from an expression

The expression on the right-hand side (RHS) of the equal sign can be one of several types as

discussed below.

EXAMPLE 2.16 .
In the table below are several examples of assignment statcments involving constants,
variables, and mathematical operators:

Bxpression Type of Expression

PAY = 5.12 Constant assigned to the variable pay
TAXES = CALC The value of the yariable calc assigned to faxes

PAY = GROSS - NET + 5.00 Value of the numerical expression assigned 10 pay
Function used to evaluate the square root of ¥ o'y

X = SQRT(Y)

1n each of these examples, something happens ont the right-hand side to determine what value

goes into the \efi-hand side. This is an important difference between an algebraic equation

&
T
L

CHAP. 2] GETTING STARTED 49

and . A

an :(r;u :.tsis;inr;créte s:g::r;fn;s ‘:";; n::st l.(e;p hm mind that these assignment statements are
not equa . , the right hand-side i i
then assigned to the variable on the leﬂ:-hind side. ide s ovaiunied st and the answer

EXAMPLE 2.17

In a conventional algebraic equation such as:
x=1-x
we could solve for x very easily and obtain:
x = 12

But, the i =1 w 3

equation i(a,:g: ;ﬁzeg(Ratl-ln X) in a program has a very different meaning. It is ot an

of the result fo & S[:‘!eciﬁce:; it :;lan ;xpression to be evaluated followed by an assignment
ariable. For example, consi i !

(program) and try to predict the final walte of Xl? nsider the following lines of code

1.0
= 1.0 - X
PRINT *, X
Wh = i
o :ﬁgfﬂ:&?ﬁlﬁ)ﬂ (X}Z 1.0) is executed, the real variable X.is givena value 1.0, When
e o % ;etll'iev_ed gl;ﬁcubtis:;l:];expression is evaluated as 1.0 — {1.0), since the
U r ubstituted into the expression. The resul ich i i
placed into the variable X. X now has the v i e e s oo o a
f X. alue 0. This process of followi i
program is known as tracing. It is a ve i ici e vonoting
. ry useful device, especiall i
plog g. I A . Esp y when you are attempting -
vmi:;ti ?nptll'lc;gram. To aid in tracing a program, you should create 2 table of al? t?:ge
program, where each row represents one of the variables. Whenever a

variable is assigned a value, it is enteved i
B L s ot , into the.m.bie and whenever a value is required, the

EXAMPLE 2.18

Trace through the following program segment and predict its output:

X = 1.0

¥ = 2.0

Z=3.0

X = -X

PRINT *, 'Value of X is: '

Y=Y-1.0 PR

PRINT *, ‘Value of Y i ’
is:

Z =2+ X ° ¥

2 =2+ X-%

PRINT *, Value of 7 is: ', 2

The variable table would look like this after performing the’trace:

50 GETTING STARTED [CHAP. 2

1.0 — 1.0
20 - 1.0
3.0 20 00

[

anged once during the program after the initial

Note that the values of X and Y were ch
s. So, afier execution, here is the final output:

assignment, but that Z changed value two time:

value of X i=: -1,000000
value of Y is: 1.000000
value of Z is: 0.0000C0

They initialize the variables X, Y, and

Lines 1, 2, and 3 are constant assignment statements.
4 télls the computer to take the current

7 to the values 1.0, 2.0, and 3.0, respectively. Line

value of X (which is 1.0) and change its sign. The value is placed back into X. X is now
_1' Line 6 states to take ¥ and subtract 1 from it, or 2 ~ 1is 1. That value is placed back
inte Y. Y is now 1, Line 8 states to take Z + X and place that value back into Z, or 3 +
(~1)is 2. Z is now 2, Line 9 states to calculate Z + X - Y and place the result back into
Z,or2+ (=) —1is 0 Finally, Z is assigned the value 0. Note that during these
evaluations the right-hand side is processed first, and then the answer is placed into the

variable on the lefi-hand side.

Expressions and Hierarchy of Operations)

All of the examples of expressions have been simple ones. They've consisted sirpply of
multiplication, or addition and subtraction. There are only five basic arithmetic operations plossible
with Fortran. They are addition, subtraction, multiplication, division, and exponentiation, as
presented in the following table:

Priority Algebraic Symbol Foriran Symbol Meaning
1 [[N Parentheses
2 A" il Exponentiation
3 ES * Multiplication
3 -+ i Division
4 + T+ Addition
4 - - Subtraction

Tn order to ¢reate mathematical expressions, you must
a single text line entered into your program. Whil

expressions, Fortran reéguires you to place the expression on a single line.

use the symbols listed in the table on
e algebra permits the use of multiple line

CHAP. 2] GETTING STARTED . 51

N ﬁ_m_l;or1 :Jf: c:i tl;:: g;}tner;toorrsev;im :crllt:_ivalalent pesition within the hierarchy {except **}, evaluation
t . Fe ponentiation, the direction is from right ‘ Xamp!
8.0/2.0%4.0 gives 16.0, since the division is done first and then the mugltipltigatliz{itll for e

EXAMPLE 2.1%

Here is how you might write a mathematical expression i.n alg‘ei:ra:

a+2b +¢
y=g2r22%c
d

but in Fortran, this is how we would write the same expression:

¥ = (A+2*B+C)/D

There are several key points that you should notice in this simple example:

L] irrﬁflzjf c{?:;a‘tjon; arBe not allowed in Fortran. In algebra, we know that 2B means
ipli y B. But, in Fortran, you fci i impli

il ation e 2V, you must explicitly write out the quhed

¢ Everything is written on one line. In the al i i
. ‘ \ gebraic expression, the numerator is
:ur;t;r;t;.?xz $e ;enommazor, like a fraction. But, in Fortran, we place the

e denominator on the same 1i wi

Tumotator and the d e line and separate them with a slash {/)

I'Il:lh:lsgt;grfh eil:ei::l:‘ ?:sc‘l;;s::;)d:ga;):JIJC sh;gld perform the rultiplication (2B) before any addition
, : A X is evaluated first and then added to A and C .
all mathematical operations have a well-defined hierarchy. This is true also for‘ g‘:;l;ior:;

- summarized in the preceding table.

EXAMPLE 2.20

Based on the hierarchy of mathematical operations, evaluate the following expression:
9.2 — (2.0%3 ~ 14.0/7.0) + 14.0* 0.1

1. First priority is (), so th fon inst
Fizst prio ﬁtryst-) e expression inside the parentheses (2.0%*3 — 14.0 / 7.0) is
2. -Next in the hierarchy is ex iati i
] ponentiation. Thus, the expression inside the {) i
by perforrm.}:g'the'exponentiatioa first, which gives (8.0 — 14.0 /7.0)()i evaluated
. T}le next priority is the division, resulting in (8.0 — 2.0). .
. gmally, perform the subtraction (6.0).
" Re ‘o the oriei : . . .
R t1.u'r114‘0 0 0_‘; -ongmal expression with this result, so the expression becomes 9.2 - 6.0
. Next is multiplication and the ex i
; : pression becomes 9.2 -~ 6.0 + 1.4
Finally, addition and subtraction have the sarm iori e,
) 3 .
feft o sight, which gives 3.2 4 1.4 = 4.6 Therefore, they are evalusted

[T

o

52 GRTTING STARTED [CHAP. 2

EXAMPLE 2.21
When two exponentiation operations zppear together, they ave evaluated right to left:

2Rk A*Y o 2 #* 9 - 512

Here are some more examples to see if you fully understand the rules for evaluating an

expression.
EXAMPLE 2.22

For the examples below, we supply the answer. Tra
the same result:

ce through each and make sure you get

Expression © Value Comments

16.0 — 4.0 — 2.0 10.G6 Left to right

16.0 = (4.0 ~ 2.0) 14.0 Evaluate expressionwithin {) first
16.0 + 4.0* 2.0 24.0 Multiplication first
160/4072.0 20 Left to right

16.0**40*2.0 131072.0 Exponentiation first

4294967296.0 Expression within () first

16.0 ** (4.0 % 2.0}

careful to make all the constants and variables real.
that govern integer arithmetic. Also, when you try
illustrated in the following section.

Inthe preceding examples, we have been
This was done because there are special rules
to mix real and integer data types, complications arise as

2.6 INTEGER AND MIXED-MODE ARITHMETIC

When performing arithmetic with real mumbers, the results show what you would

algebraically expect. However, when performing calculations with integers or a mixeare of integers
and real numbers, different resulis may be obtained.

The two operations that are affected by data type are division and exponentiation. Division
of two integers results in an integer value. This value is equal to the real pumber result with the

decimal portion deleted.

EXAMPLE 2.23 ’
if we do mathematics with reat numbers and integers, Note

The result can be very different
in the following example that the integer division produces an unexpected result:

Using reals: 3.0/20 =15 (notethat 3.0 and 2.0 are real as is 1.5}

i
0
-.‘
&
b
i

CHAP, 2] GETTING STARTED 53

Using integers: 312 =1 (not 1.5! Note that 3 and 2 are integers as is 1)

In the second example above, both 3 and 2 were mtegers because we did not use decimal

points. Therefore, when the computer does the division, it will gi i
:) e e division, it will give an integer o i
is obtained by #runcaring any noninteger remainder. ¥ et esult. Thi

You must be careful when using i i ic, si i
g integer arithmetic, since unintended results can creep int
your program. Sc be carefull But sometimes this effect is desired, as shown in the next exail;;eo

EXAMFLE 2.24

The following program makes change i -
he | E ge in terms of dollars, quarters, di i
pennies by making use of integer division: ? fmes. nickels, and

Egiﬁ?f?,gﬁgeeﬁ"ﬁiﬁé S cenpa v DovE. PR
Whole dollar part is the integer division of CENTS by 100
DOLLAR = CENTS / 100
What is left is the remaining change in CERTS
CENTS = CENTS - DOLLAR * 100

Repeat this process for QUARTR, DIME, NICKEL and PENNY .

Ao oo a0

QUARTR = CENTS / 23

CENTS = CENTS - QUARTR * 25
DIME = CENTS / 10

CENTS = CENTS - DIME * 10
NICKEL = CENTS / &

PENNY = CENTS - NICKEL * 5

Print out the results

naon

PRINT ‘Dollars: *, DOLLAR

*

.
PRINT *, 'Quarters: ‘, QUARTR
PRINT *, Dimes: ’, DIME
PRINT *, 'Nickels: ', NICKEL
PRINT *, ‘Pennies: /, PENNY

END

We took a.dvanzage of integer arithmetic in this example to give us the desired results, For
exa.mplle, if the change were 78 cents, division by 25 would preduce exactly 3 (not 3 plus
a remainder). Thus, the program would say to return 3 quariers.

The second area where the results will dej -

e s e th pend on whether you use reals or integers i
exp_m:lmtlatlon. I?m.ier certain circumstances, an error will occur depending on the chfice cﬁ'
variable type. This is because the method of performing the calculation is different depending on

54 GETTING STARTED [CHAP. 2

whether the exponent is integer of real.
In the case where the exponent is an integer,
multiplications. But when the exponent is a real number, Fortran witl take the log of the base,

multiply the result by the exponent, and then take the inverse log of that Tesult. This tnay caase
the computer to take the logarithm of a negative number, which produces an errot.

the value is determined by successive

EXAMPLE 2.25

Try to use integer values for exponents, Otherwise,
to calculate the result.

Fortran will use logarithmic, functions

2%*g is calculated as FHNPIPHIND = 64

but
%460 is caloulated as Log~'(6*Log(2)) = 64.0

The result is the same, but there may be a problem, as shown below:

(~2)**3 is calculated as _gx—k—2 = —8§

but

ERROR since log of a
negative mumber is not.
defined.

(-2**0.3 is calculated as Log~%0.3*Log(—2) =

d real numbers are mixed during division, the integer value is
ult is the expected vatue, What must be realized is that these

are applied on an operator by operator basis.

In sitvations where integer an
converied to a real number, The res
rules for integer and mixed-type division

EXAMPLE 2.26
Evaluate the following mixed-mode arithmetic expression:

1=23%(3/2)—3

Pirst evaluate 3 / 2:

3/2=1 (Fraction is truncated because both numbers are integers)

Next perforrn ultiplication. An integer \imes a real yields a real mumber.

F=23-35

Finally perform the subtraction. A real minus an integer yields a real.

(Fraction is truncated because T is an integer)

B
g
i
£

CHAP. 2] GETTING STARTED - 55

2.7 SELECTED LIBRARY FUNCTIONS

F . . .
oot © iﬁ;tr:nnd fizcg:_g b;have mich hke: the definitions for mathematical functions such as square
expr.emor.!. S0 for t;keogr::f :Mf:ntztﬁ;tbg ﬁfacing its name (foltowed by its arguments) in an
; ch the type, numb LI i
for the function. We summarize the most common tfqu:lctiom bgo?vnd order of srguments required

Name Description Argument Result Example
ABS(X) absolute vatue integer integer T = ABS(-51)
real real X = ABS(—-17.3)
double . double Z = ABS(—O.iDM}
ACOS(X) atccosine real real {rad) X = ACOS(0.5)
double double (rad) X = ACOS(0.5D0)
ALOG(X) natural logarithm real real X = ALOG{2.71828)
double double X = ALOG(O.-Z'."ISDOI)
ALOGI0) logarithm base 10 real real X = ALOGIN310.0)
‘ double double X = ALOGIO(O.I‘DO)
AMAX(...} remurns largest value imteger integer I = AMAX(5,1,6,2) -
real real X = AMAX(O.Z,Siﬁ)
double double X = AMAX(1D0,3D3)
AMINC..) returns smallest valoe integer integer I = AMIN®4,3,—4)
real real X = AMIN(0.2,5.6)
double double X = AMIN(1D9,3D3)
ASIN(X) arcsine real real (rad) X = ASIN(.5)
double “double (rady X = ASIN(.5D0)
ATANX) arctangent real real (rad) X = ATAN(1.0)
double double (rad) X = ATAN(.0DO)
COS(X) cosine real (rad) real X = COS(1.04712)
double double X = C0OS(1.04712D0)
_ DBLE(X) converts to double integer double X = DBLE(3)
real " double X = DBLE3.0)

-{table continues on next page)

R

56 GETTING STARTED [CHAP. 2
Na-.nw Description Argument Result Example
. . ! real X = EXP(L.0)
EXP) exponential, & double double X = EXP(1.0D0)
: integer 17 = INT(3.9999)
~INT(X) converts t infeger zieoa‘ible ;;eger 7 = INT(0.3999D01)
. eal X = FLOAT(#
FLOAT@ converts (o e :;]c:igfer f’eal X = FLOAT(0.4D01}
MOD(I) integer remainder integer ° integer 1 = MOD{294)
of 11} 7
: = NINT(3.99)
t real integer 1 .
NINTEO 1;1?1:131;::0 e double integer J = NINT(0.6DO1)
_— 1 X = REAL(Y)
REAL(D) convert to real dln;s%;‘: I;Z:.l % = REAL{0.23D02)
o = SIN(0.5202)
; real (rad) real x
SIN(X) sine s (ag) doule X = SIN(D.52D0)
al X = SQRT(I7.6)
SQRT(X) square root e double X = SQRT(0.17D2)
al K = TAN(0785)
TAN(X) ~ tangent ral () oabie "X = TAN(0.785D0)

' i i i i), not
Be careful when using the trigonometric functions, since _they require anglei:s in r::l;?::s(ra)
d:grees. Similarly, the inverse trigonometric functions will repost the results in .

EXAMPLE 2.27

The following program reads in two points and calculates ﬂlw distance between them:

C Distance EBetween Two points {(X1,¥1} and (X2,¥Y2)
¢ PRINT *, ‘Enter X,¥ locaticn for first point’
s
*, X1, Y1 . .
%g?!:ﬂ)'r ;‘, ’;E:nter X,Y location for second point’
EAD ¥, X2, ¥2 3 e
gIST ='SQR"I‘ ({ X2 - X1) ** 2+ (‘é2 'EY:'L)DIS‘I'2)
PRINT *, ‘Distance between the peoints 1 ,
END

CHAP, 2] GETTING STARTED

57

Once the values of (X, Y,) and (X,, Y,) have been entered, they are used in the equation to
determine the distance d by the formula d = /(x, -z Y (- ¥, . Note that we have used
the Fortran function SQRT to perform this calculation.

1t is permissible to place one function within another, In fact, many times common sense and
defensive programming practices will require it. For example, if you are going to take the square
toot of a rumber, yon may have to make sure that the number is positive before you can attempt
the square root. Otherwise, you may be asking the computer to perform an illegal operation.

EXAMPLE 2,28

Here is the program of Example 2.27 that has been modified to take the absolute value of
a number before attempting to take the square root of a mumber:

C Distance Between Two Points (X1,¥1) and {X2,Y2)
c

PRINT *, 'Enter X,Y location for first point’
READ *, X1, Y1

PRINT *, 'Enter X,Y location for second point’
READ *, X2, Y2

DIST=SQRT (ABS { (X2-X1) %*2 +
PRINT *,
BEND

(¥Y2-¥1) **2))
‘Distance between the points is ’, DIST

In this situation, it made no difference that we added the ABS function, since the argument
(e —x*+(y;—y,)* is always positive (or zero). So taking the absolute value makes no
difference. But there will be many occasions when this might be needed.

2.8 DEBUGGING TIPS

Debugging is the process of removing errors from your program.- For the types of programs
presented in this chapter, two error types are most likely to occur; improper use of
integer/mixed-mode arithmetic and simple typographical errors.

You may also have programs that contain run-time and logic errors. Run-time errors are
those that occur while the program is running, and can usually be traced to illegal mathematical
operations such as the logarithm of a negative number. Logic errors are those where the program
executes to completion, but gives you the wrong answer. You simply gave the computer a wrong
series of instructions to execute. Both of these types of errors are most easily solved by tracing,

Typographical errors (fypos) ocour when you accidentally mistype the name of a variable or

command. Since Fortran utilizes implicit typing, new variables can be created when you make a
simple typo error. You can detect such mistakes by:

* Including the statement IMPLICIT NONE at the beginning of yoti 'ﬁrogram..
Declaring all the variables that you intend to use in th/ep; gram by explicit typing.

By disabling the implicit typing feature, variables that ‘are not declared will result in a
compiler error. This is one way of locating variables creatéd by "typos.”
P

d
P
;

GETTING STARTED [CHAP. 2 CHAP.2] GETTING STARTED
| 59

58

EXAMPLE 2.29
Solved Problems

Here is an example of how to use the IMPLICIT NONE statement to help locate
typographical errors. Note that if we turn off the implicit typing feature by using the

IMPLICIT NONE statement, we will then have to declare gvery variable with the explicit 2.1 The followi i
. ing examples illustrate various types of Hiteral constan
ts. Some examples are valid,

while other are invalid. Where appropriate, we indicate the default data type (Real, Integer

typing.
: etc). Explanations for the invalid examples are provided.
¢ The IMPLICIT NONE statement is placed firgt in the program
¢ We must then explicitly name all the variables in a type a) 1.00 (Real)
¢ declaration statement(s) b) 123 (It
IMPLICIT MONE O 48 (Im:’ge’;
gggg }'E:.L) Xi?) Y}flgf ' X§? ' YIQENGTH g)) E%,?SA . (IﬂVfli'e;-‘ Fraction is not allowed)
LENGHT-SQRT ((X2-X1) #¥2 + {¥2-Y1}**2) - (nvalid: £ is not allowed)
PRINT *, ‘Length is ‘', LENGTH 9] '—0-},23E7.1 (tnvalid- Exponiens must be an integer)
END g) ’She’'s happy' (Character) &
D (i, on - (Comiey
. i ,3E0)
On line 7 LENGTH is misspelt as LENGHT. Because imgplicit typing is tarned off, the i D 1,234 Fﬁ"mfgfﬂ
errar due to an undeclared variable. If the IMPLICIT NONE k) .Palse g (In:Zl:'d‘ m m‘f ﬂf?_‘ allowed.)
s ve trailing "." to be logical}

compiler will generate an
statement is omitted, the computer would accept both spellings as different variables and will

Teport no error.
. 2.2 The following are examples i iovali ; .
ocated by adding PRINT statements before ~ ... provi ded. ples of valid and invalid varjables. Reasons for invalid examples are

Errors due to mixed-mode arithmetic can often be 1
nt out the variables being used in the

and after each expression. Before an expression, pri)
calculation. After an expression, PRINT the result, Trace the program and see if the values being z) X (Valid,
printed out at each step of the program agree with what you expect. b) Height (szl:‘dj
EXAMPLE 2.30 g)) i{sgt?:n ' (Valid; Spaces ignored)
: (Invalid: 1st character must be letter)

This program always refurns the result “Length is 1.000000," no woatter what values are e} .TEST ’ {Invalid: *.“ not allowed)
entered. Find the error. .

- 2.3 'The following examples demonstrate implici :

IMPLICIT NONE variable name. P nstrate implicit data typing based on the first letter of the
REAL X1, Y1, X2, ¥2, LENGTH

READ ~, X1, ¥i, X2, Y2 X ‘
PRINT *, X2. X1, Y2, Y1)) (1/2) b} Volume Real)
LENGTH=((X20X1) *##2 + (¥2-¥1)**2) ¥+ (1/2 (Real — note that
PRINT *, ‘Length is ‘. LENGTH Sl)) iCOUNT (Integer) thes o case Sasars e O
nDi i
13 {Integer — mixing lowerfupper case letters OK}

END

We have added PRINT statements before and after e caleulation of LENGTH, The 24 Th i .
' e following examples demonstrate explicit data typing.

computer will always report] ENGTH =1.000000," but when you trace through by hand

you should geta different result. By adding the PRINT statements, we find that the program RE ’
line that calculates LENGTH is in error. The problem is the improper use of infeger i’;) ‘ INTAL XY, Z (Vaiid, defines three real variables)
arithmetic in the exponentiation (** (1/2)). Because 1/2 involves integer division, the result C; c EGER COUNT (Valid, defines one integer variable}
is 0. This probiem can be fixed by simply adding decimal points, producing (**(1./2.)). it LOI MRAG[CEgﬁ NAME*20 (Valid, defines one variable 20 characters long)
(Valid, defines one logical vari
& L gical variable)
) DOUBLE PRECISION VOL (Valid, defines one double precision variable)

