Chapter 1

Ocean ecology: some fundamental aspects

Biological oceanography could also be termed ocean ecology. The term encompasses the ecology of oceans just a short distance from the shore - perhaps from the lowest low-tide level onward, right out to the centers of the great oceanic gyres. Often, estuarine habitats are included in the study of the oceans. Oceanographers deal with questions like: what sorts of organisms inhabit different sectors and depths, and why? How is organic matter produced, by what types of "plants" (although we rarely say that word, as we will explain), and what controls their growth? Wher and how do the the herbivores and ir prey? How do the changing seasons affect biota? What relationships prevail between organisms - from microbes to whales - and the chemical and physical character of seawater? How can worms and isopods make a living in mud beneath 4000 m of water in near-total darkness? What can we expect to harvest from the sea, and how can exploitation of fisheries or seafloor mines be achieved without damaging the resource or the habitat? How will ocean biota be affected by global climate change? Sometimes the key issues and answers to our questions cone from sais. Fulogy, ontally hes mostly fron ches or phes. biological oceanography straddles many dis

Seawater

The root word in "ecology" is oikos (orkoб), which is Greck or house" or "habitat". It is the study of life in
oceans is water - salt water. So, let us begin by considering oceans is water - satail. The meter structure of water, water in some detail. The molecular structure of water,
dihydrogen oxide, involves moderately strong covalent bonds between each of two hydrogen atoms sharing their single electrons with an oxygen atom. The water molecule is not linear; rather the hydrogen protons repel the overall electron shell to the far side of the oxygen atom and assume an angle of 105° from each other. Thus, the overall molecule is polar, being electropositive on the hydrogen side, and negative near the oxygen atom. This polarity creates a weaker bonding potential among the water molecules, especially in the liquid and solid phases. These hydrogen bonds, H-side to O-side, create a chaining effect, amounting in the liquid phase to arrays of "flickering clusters", and, in ice, to a weakly ordered crystal. As liquid water cools, the hydrogen bonds are less frequently disrupted by thermal motion, and the spatial array of more tightly bonded clusters progressively occupies less space. This (Caldwell 1978). However, the molecular ordering within fa is such that more space is filled by fewer molecules, so at the velu ice is actually 10% greater than lid phe at the desity maxim, with the ice floats on water. Appropriately, much has been made of this unusual way in which water differs from comparable this unusual way in which water differs from comparable
liquids. Lakes, for example, must cool entirely to $\sim 4^{\circ} \mathrm{C}$, liquids. Lakes, for example, must coof entirely to $\sim 4 \mathrm{C}$,
becoming vertically homogeneous, before surface freezing can begin. Ocean salt water has a rather different equation of state (density being a function of temperature, salinity, of state (density being a function of temperature, salinity,
and pressure), such that the temperature at which the maximum density occurs decreases with both salinity and pressure (see the data in Caldwell 1978), and overturning is not a necessary preliminary to freezing.

In addition, because of the hydrogen bonding, water has very large specific heat capacity ("specific" means relative to the mass). The amount of heat required to warm a gram The calorie is now considered to "a "ashe" equal to $\sim 4.180 \mathrm{joules}^{-1} \mathrm{O}^{-1}$, toring an arch wh perature and pressure (Why should anything be left as eas to remember?) which is a very large amount of energy whe compared with the requirement for, say, ethanol with weaker hydrogen bonding at 0.58 calories $g^{-1}{ }^{\circ} \mathrm{C}^{-1}$ This means that oceans are very slow to warm and very slow to cool, enabling currents headed poleward from the tropic to carry massive amounts of heat to high latitudes. In addition, very large amounts of heat must be added to water to force evaporation $\left(2257 \mathrm{~kJ} \mathrm{~kg}^{-1}=540\right.$ calories $\left.\mathrm{g}^{-1}\right)$ and removed to allow ice formation $\left(334 \mathrm{~kJ} \mathrm{~kg}^{-1}=80\right.$ calo res g^{-1}). For reasons that we will leave to the physical chemists, the temperature of liquid water remains fixed during freezing, at $0^{\circ} \mathrm{C}$ for pure water, and a few degree lower for salt water (hence the salting of icy highways), Once frozen, ice can become even colder. Water also has fixed boiling point at a given pressure, where the molecules escape explosively to the gaseous phase. This is $100^{\circ} \mathrm{C}$ at 1 atmosphere pressure. The effect of pressure on the phase ransition is important in deep-sea hydrothermal vents, such that the boiling point of water at a depth of 2000 m is er seafloor with, magma-heated water can emerge from he sealoor without exploding into steam. Water does and this evaporation is more rapid when the tepperares, difference between the air and the water is great The oceans, lakes, puddles, wet sand, and plant tanpiration all pump water vapor into the atmospere leading to cloud formation, enhanced reflection of sunlight back to space, and rainfall that varies geographically, seasonally space, and rainfall that varies geographically, seasonally, aspect of the chemistry and physics of water is ecologically important.
The electrostatic polarity of water molecules also means that they will take on a preferential orientation adjacent to
ionically bound molecules, to salts. For sodium chloride, for example, the oxygen atoms will tug on the sodium ion, and the hydrogen atoms will pull on the chloride. This tugging will be sufficient to dissociate the ionic bonds of many salts, and the water molecules will then encase the freed ions. Thus, dissolved salts will accumulate as the rocks. These salts will then be tres through magma-heated sea is at the bottom of the hill so to speak - ane sea. The evaporation basin in which the salts accumulate. Over suf ficient time, a balance will emerge between the delivery rate and the processes that convey the salts into sedimentary structures (coastal salt-beds, manganese nodules, hydro thermal vent towers, etc.), such that the proportions the different ions are relatively constant. Thus, the overall "salinity" is established by the remarkably constant propor tions of the major dissolved ions (see Table 1.1).
All of those are termed conservative ions, and their proportions vary only slightly - a fact recognized by orchhammer in 1864, but confirmed by the careful an ytical work of William Dittmar (1884) with samples co ected from the world's oceans on the Challenger Expeditio (1873-1876). Calcium content does vary somewhat with depth, due to dissolution, under high pressure, of shell made from CaCO_{3}, and the bicarbonate content varie according to the amount of carbon dioxide in solution (the CO_{2} content of the oceans is rising because seawater is absorbing the carbon dioxide generated by the burning of fossil fuels). Because of the near-constant proportions of major salts, the total salinity can be quite closely estimated by determining any one of the dissolved ions, e.g. by measuring the overall waser In modern practice salinity of conductivity of the as a ratio of its conductivity to that of a "standard" sea water, and is taken to have no units (the units in the rati cancel), and is expressed on " "practical salinity scale" Salinity is often expressed simply as, say, $S=35$, a number related to the grams of salt per kilogram of seawater, but no longer stated as such (parts per thousand). $S=35$ is

Table 1.1 The proportions of the major dissolved ions in seawater. Total salts $=35.17 \mathrm{~g} \mathrm{~kg}^{-1}$ seawater

CATIONS	IN SEAWATER (gkg^{-1})	Anions	IN SEAWATER (gkg^{-1})
Na^{+}	10.78	Cl	19.35
Mg^{2+}	1.28	$\mathrm{SO}_{4}{ }^{2-}$	2.71
Ca^{2+}	0.41	$\mathrm{HCO}_{3}{ }^{-}$	0.126
K	0.40	Br	0.067
Sr^{2+}	0.008	$\mathrm{B}(\mathrm{OH})_{4}{ }^{\text {a- }}$	0.026
		F-	0.001

close to the overall average of ocean salinity. The uppe ange of S is ~ 40 in parts of the Red Sea. Unlike thos conservative ions, others, ike nitrate $\left(\mathrm{NO}_{3}\right)$, that are taken ap by pherostive Nitrate varies from ble mouts in the surface layers of oligotrophic centra ares to 45 MM (micromolar) in the deep North Pacific. These $\mu \mathrm{M}$ quatities are not large enough to make the measurement of chloride or conductivity unreliable as an index of the overall mass of dissolved salts, S, althoug itrate does make a measureable addition to seawate density in very deep waters in the Pacific.
Cell membranes mostly only pass salt ions through specific, energy-using, protein channels, but water passes through more freely, passing from the side with the lower solute (salt and everything else) concentration to the side with the higher solute concentration. This osmotic flow is actually down the gradient of water concentration. Cells and tissue fluids of much marine life, including algae and most invertebrates, are isosmotic with seawater. That is, solute and water concentrations are the same inside and outside their cells. Cells of freshwater plants and animals, on the other hand, must contain some salts and dissolved organic matter, so they have water pushing in through any porous cell surface. To avoid over-inflation, rupture, and death, they must steadily pump water back out. Protists hid 1 or for for bo whole

ane The impermeability of their kin and and that lessened influx is pumped out by their efficient kidneys. When some fish colonized the estuaries and oceans (probably stepwise in that order), the problem was reversed, with water moving out through the gills. Several solutions evolved. Sharks and rays came to tolerate large tissue concentrations of urea, giving their tissues osmotic equivalence with the sea. Bony fishes developed a system of swallowing water and then excreting the salts both via the kidneys and from desalination glands on the gills. Fish that come and go between fresh water and salt water, including salmon, shad, eels, and others, must shift between these modes, in some cases (e.g. steethead trout) back and forth many times. Many seabirds, although not impacted by the osmotic differential with seawater, must drink to replace water lost at their lungs; they eliminate the salt with glands in their nostrils. Marine mammals do not have much cell membrane exposed to water, and by and large they avoid drinking. They are very efficient at retaining water from their Theind wor Their specils). Estuan .i.ge 10 in
 h.
osmoregulation support a minor research industry favored by university faculty mors the sumber at marine stations.
The covalent bonds of hydrogen to oxygen in water are labile enough that the oxygen side of one molecule occasionally pulls one of the hydrogen atoms off another, producing hydronium $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and hydroxyl ions $\left(\mathrm{OH}^{-}\right)$. In suitably pure water (actually rather difficult to obtain), the abundance of each is 10^{-7} molar. In solutions of acid, the acid protons form more $\mathrm{H}_{3} \mathrm{O}^{-}$, increasing its molarity to 10^{-6} or much less, and neutralizing an equivalent amoun of the OH , reducing its molarity to in any given acid bases, the opposite happens. The balace logarithm of the hys 7 at neutrality 1.0 for 1 M , cid and 14.0 for 1 M hydroxide. Seawater is buffered at pH values ranging in surface waters from 7.9 to 8.4 (the near-surface ocean average is ~ 8.1) by a combination of its carbonate and borate components, with the carbonate contributing about 95% of the buffering effect. The chemistry of the system is complex, primarily because $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ that forms when carbon dioxide the carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right.$)hat forms when carbor dion $\left(\mathrm{CO}_{2}\right)$ dissolves in wate. A ver ($\mathrm{HCO} \mathrm{H}^{-}$) which dissociate fur is acting as a a proton insociacting as a base , hence the strong buffering action. The entire system is under stress from increasing dissolution of carbon dioxide from fossil-fuel burning and other human activities, a topic to be considered later. However, the most important concern arises from the fact that the dissociation of more carbonic acid both reduces the stability of shells and coral skeletons and increases their formation costs. Organisms have some capability for internal pH management, but, as acidity increases, the energetic costs of regulation increase. The acid-base relations of seawater have been extensively and carefully studied, and therefore we will leave their description to the ocean chemists. A point to keep in mind is that the pH scale, so commonly used, is logarithmic to base 10. Thus, a change from pH 8.1 down to 7.8 , which may come about, would represent a factor of two increase in hydronium-ion molarity - a very large shift indeed.

Pelagic autotrophs are small
In sharp contrast to the land, large complex plants are usually absent. Sargassum weed (Sargassum spp.) suspended from ans bladders in the subtropical gyre of the North Atlantic is a special and localized exception. However, it Alavics a model that it is little surprising not to find eyerywhere: examples exist of large, floating plants, but they just are not typical. Instead, almost all of the photosynthetic organisms in the water itself, that is in pelagic
habitats, as opposed to attached to the bottom, are small, unicellular algae known as phytoplankton. The wor "plankton" comes from Greek ($\pi \lambda \alpha \gamma \kappa \tau 0$ g) and implies a necessity to drift with the currents. Clytemnestra, in Aeschylus's Agamemnon, used it in denying that he houghts were wandering (plank oss). A classical schola planktology, to describe relatively passive swimm Phytoplankton range in cell diameter from about $1 \mu \mathrm{~m}$ bout $70 \mu \mathrm{~m}$, with a few representatives up to 1 mm . It mportant to form a mental sense of this size range. Typical bacteria are $1 \mu \mathrm{~m}$ diameter; red blood-cells are $7 \mu \mathrm{~m}$; bacteria are $1 \mu \mathrm{~m}$ diameter; red blood-cells are $7 \mu \mathrm{~m}$; an isject of $50 \mu \mathrm{~m}$ is just visible to the naked eye if contrast
ish. Most algal cells in the sea are at the lower end of this range. Definitions for the "size jargon" of biological oceanography are in found in Box 1.1.
Why are pelagic autotrophs so small? Biological oceano raphic dogma, which will not be contradicted here, say they are small in order to provide a large surface area rela tive to their biomass in order to absorb nutrients like nitrate, phosphate, and iron from extremely dilute solution oil water in land habitats provides somewhat higher level of nutrients (Table 1.2). The modest difference is aug mented in the soil-water case, however, by rapid resupply from the closely adjacent mineral phase; nutrients do not ecome so thoroughly depleted in soil water. Thus, rootlets and root hairs over a small fraction of a plant's surface can

Box 1.1 Plankton sizes

Several sets of prefixes have been proposed to distinuish size classes of plankton. We seem to have settled on those proposed by Sieburth et al. (1978).

CHARACTERISTIC LENGTH	TERM (EXAMPLES)
<0.2 $\mu \mathrm{m}$	Femtoplankton (viruses)
0.2-2 $\mu \mathrm{m}$	Picoplankton (bacteria, very small eukaryotes)
2-20 $\mu \mathrm{m}$	Nanoplankton (diatoms, dinoflagellates, protozoa)
20-200 $\mu \mathrm{m}$	Microplankton (diatoms, dinoflagellates, protozoa, copepod nauplii, etc.)
0.2-20 mm	Mesoplankton (mostly zooplankton)
$2-20 \mathrm{~cm}$	Macroplankton

supply nutrients for growth and maintenance of very large structures. In the sea, the rate of supply is limited by diffusion from dilute solution to the absorbing cell surface, so surface area must be maximized relative to cell volume This is achieved by being small. For example, diatoms a an abundant group among the phytoplankton. Many of tio 1 , then the ar wo for 6 length, increasing strongly as size gets smar The suffe ea $30 \mu \mathrm{~m}$ dian his $4241 \mathrm{~m}^{2}$, while that of $15 \mu \mathrm{~m}$ one is a quarter of that $1060 \mu \mathrm{~m}^{2}$.Howeve he smaller one has twice the surface area per unit yolume. Surface-to-volume (SVI) ratios of spheres vary similarly $6 /$ diameter. The effect of size on S / V is stronger for mor elongate shapes (you can prove that to yourself by doing the calculations).
It is not surface per se that matters, since phytoplankto ells only cover a small fraction of their surface with trans port enzymes to move nutrients from outside to inside. The mportance of small size is to provide a large relative surfac toward which diffusion can move nutrients; it is the rate of diffusion that is limiting at low concentrations. At the ize scale of phytoplankton, the boundary layers (see below) ext to cell surfaces in contact with the water are large elative to the cells, inhibiting fluid exchange next to the boundary. Turbulent shear is mostly at larger scales than the size of cells. Specifically, there is shearing mostly a dimensions larger than the Kolmogorov length scale, typically multiple centimeters at ocean rates of turbulent energ. dissipation. Below such dimensions, viscosity dominates, nd the impact of turbulence is small (Lazier \& Man oly sowly, elthough sinking to a cexbeng increase nutrient availability at a distance from a cell,
able 1.2 Relatively low values of major nutrient concentration in surface water compared to natural (as opposed to fertilized) oil-water values. Units are micromoles liter ($\mu \mathrm{M}$).

UPPER-OCEAN CONCENTAATIONS IN WINTER	$\mathbf{N O}_{3}{ }^{-}$	$\mathbf{P O}_{\mathbf{4}}{ }^{\mathbf{3 -}}$
North Altantic subarctic	6	0.3
North Paciic subarctic	$16-20$	1.1
Natural soil water	$5-100^{*}$	$5-30^{* *}$

 s relatively dry and much of the water is associated with organic matter. put much faith in in tunits were 0.05 to 3.0 ppm, a a usual unit in that fiedd). Most
sapply is effectively limited to molecular diffusion. The diffusive flux of a dissolved solute, such as nitrate, towar an absorbing surface of area A is given by Ficks Law, which Fick derived (Cussler 1984) by analogy to Fourier's La or heat conduction:
flux (amount arriving/time) $=-A D \delta C / \delta x$,
where D is the substance-specific diffusion coefficient and $C / \delta x$ is the gradient of concentration (amount/volume) way (hence the minus sign) from the surface. As stated diffusion is slow enough that only a small fraction of the cell surface needs to be occupied by transport enzymes to acquire the specific molecules that the cell must absorb. stimates by Berg and Purcell (1977), based on rates diffusion and handling time per molecule, can be inter preted to imply that only a few percent of the cell surface needs to be devoted to transport enzymes for any required solute. More would not be useful, due to limitation of dif fusive supply to the surface. In a sense, this is life-enabling since many different solutes require a membrane trans porter or at least a passage chan. (1997) shaw
 cells of ill sizes have equal the diffusion-limited (wimum) rates of iron uptake per unit area Because the on requirement is eneral, and only met by the Fe^{3+} ion sufficient areal density of transporters evolves in most (all?) pecies, such thet uptake is, in fact, diffusion-limited, not

Fig. 1.1 Celluar uptake rate (per m^{2} of cell surface area) of ferric iron rom a culture medium (on a logarithmic scale) by phytoplankton cells of dilferent mean diameters as listed, two species of Thalassiosiri (diatoms) and two of Prorocentrum (dinoflagellates). Uptake was determined with (Fo $(3+1) \cap 0.75 \mathrm{nM}$ at $20^{\circ} \mathrm{C}$, ferric hydroxide precipitates, dashed curve, maintaning Fe' at $=0.75 \mathrm{~nm}$. Int the experiments, Fe' was set by means of an
mon chelating agent (Atter Sunda \& Huntsman 1997).
transporter-limited. Smaller cells with less mass relative to surface area, however, receive enough iron to sustain growth when large cells are iron-limited. In addition, small, anic phytoplankton have evolved to require less iron unit mass by substantial rearrangements of both photosynetic and oxidative metabolism.
Because phytoplankton are small, they are also individu By ephemeral compared to terrestrial plants or to alga cally take a bite from a plant, which then heals; pelagic azers typically ingest the entire phytoplankton cell, so s gone. Therefore, maintenance of a population of cells, phytoplankton stock, depends upon their rapid reproduction. And reproduction can be rapid. Many (not all) phyoplankton can double in number one or more times per day. Thus, if grazers are few and growth conditions (light, nutrients, temperature) are good, then stocks can grow exponentially. Doubling once per day, they can increase 1000 -fold in 10 days. Rapidly growing diatoms can increase wice that fast. This potentially rapid increase is the basis for phytoplankton population outbursts or "blooms", and also for harmful algal blooms. However, blooms generally do not develop at the rate that phytoplankton cells divide. There is always substantial grazing, and stock increase is generally limited to modest daily percentages. Blooms most commonly occur (where they occur) in the spring, and spring phytoplankton blooms have been and remain a central interest in biological oceanography. We will consider them in some detail (see Chapter 11), including explanations for those wide oceanic stretches where they generally do not occur

Water is heavy and, for small particles, sticky

Water, fresh or salt, has mass, and the principal unit of mass, the gram (g) was chosen to approximate unity for a convenient volume of water, the cubic centimeter $\left(\mathrm{cm}^{3}\right)$. Thus, the density of water at 1 atmosphere pressure and $0^{\circ} \mathrm{C}$ is $1.0 \mathrm{gcm}^{-3}$. Redefinitions of units of measure have caused tiny deviations that for most purposes can be ignored. Like all substances, water expands and and below $4^{\circ} \mathrm{C}$. Seawater, because of the changed intermolecular attractions due to the electrostatic forces from its constituent ions, does not have a similar temperature of minimum density. It contracts down to its freezing point, which is well below $0^{\circ} \mathrm{C}$ because of so-called colligative effects. Thus, the density of warm seawater is less than that of cold, over the global ocean temperature range from $\sim-2^{\circ} \mathrm{C}$ in the Antarctic to $\sim 40^{\circ} \mathrm{C}$. Moreover the density varies with the salinity. Finally, water is not incompressible (contrary to a commonly taught myth); at deep ocean pressures it contracts substantially.

Oceanographers use Greek symbols for different aspect of density, particularly σ_{t} for a measure of seawater' density if it is brought to the surface without heat exchang ratinity change, just decompression: $\sigma_{\mathrm{t}}=1000(\rho-1)$, for which $\sigma_{\mathrm{s}}=24.37$. Thus, $\sigma_{\text {(sigma-t) }}$) is just shorthand for the modest but critically important variations of density due to salinity and temperature (not depth). A furthe refinement is often used, σ_{A} (sigma-theta), accounting fo diabatic cooling from expansion (expanded, it will have the "potential temperature").
For rough calculations, the changes of density with temperature, T, and salinity, S, are:

$$
\Delta \sigma_{\mathrm{t}} \approx 0.20^{\circ} \mathrm{C}
$$

(less useful than the approximate S effect because quit non-linear with T)

$$
\Delta \sigma_{\mathrm{t}} \approx 0.77 \text { unit } S^{-1}
$$

Actual density (ρ not σ_{t}) changes with depth (almos consistently symbolized as z), about
$\Delta \rho=0.0000044 \mathrm{~g} \mathrm{~cm}^{-3} / 2$ atmosphere pressure,
and (again, for approximations) P increases 1 atmosphere for each 10 m of depth. Thus, at the bottom in the Marianas Trench, the density is $\sim 1.069 \mathrm{~g} \mathrm{~cm}^{-3}\left(1069 \mathrm{~kg} \mathrm{~m}^{-3}\right)$. Jus column. It turns out that compression also affects the chape of organic molecules in deep-sea organisms, including bac eria, deep-diving seals, and whales. Enzymatic modulatio of organic reaction rates depends upon very weak forces mong atoms at the active sites of enzymes: hydroge bonds and van der Waals' forces. Small distortions of an enzyme's shape can change the effectiveness of the bonding or bond release. Such effects become important at depth differentials around 1000 m (100 atmospheres). Thus, biohemistry and sometimes viability are affected by transfer of deep-sea fish, squid, shrimp, etc. to shipboard for experimentation. The biochemical reactions of deep-sea benthic bacteria must be studied in pressure chambers. On the whole, decompression does not tear enzymes apart, and they function again when placed back under pressure.
For precise calculation of density from conductivity (C, a measure of S), temperature (T) and pressure (D, because depth is proportional to pressure, hence "CTD") data, it is necessary to use empirical polynomial functions with extraordinary numbers of terms. For a current version, see Feistel's (2005) equation with 101 constants (many relating to sound speed, enthalpy, and other values of occasiona
Much of the significance of all places
en is ald is the
downward, and the stacking is remarkably stable. Moreover, the stacking has major ecological consequences. Organization of the stack is created partly by sinking of cold, saty water of the Gutf Stien is frigerad by frid Astic 1 , hen sinks, whereas, in the Antarctic, exclusion of sat fro forming sea ice into the water below adds to the density of extremely cold surface layers that also sink These deep waters spread through the world ocean, making the dee waters cold everywhere. At the same time, the surface is heated by sunlight from above, decreasing the surface heated by sunlight from above, decreasing the surface
density, increasing the stability. Over the full range of depth, typically 4 km and in places 8 km or more, the compression of the water by pressure enhances the stability o the stacking. In order to open volume at depth for the sinking cold, salty water, the ocean everywhere is slowly being vertically mixed. This is most active in the uppe layers driven by wind, tides, and internal waves, but must proceed at all depths. The deep limb of the circuit is (in large part) from the Norwegian and Irminger Seas to the vicinity of Drake Passage, then east across the South Atlantic and Indian Oceans and finally filling the deep Pacific. That full passage takes several thousand years. It is termed the "thermohaline circulation". Balancing the budget of sinking volume with that of upward mixing is not a simple set of measurements and is not yet accomplished. So-called internal tides provide only about half the necessary mixing energy. There has been recent interest in the possibility that nimals, from krill schols to whates, wigh provid much engy (Dewar et al. 2006, Visser 2007; Kaiia Dabiri 2009).
Stable vertical stacking of the ocean "water column" (an essential bit of oceanographic jargon) is most significan ecologically because of the limits it sets on upward mixing of inorganic nutrients like nitrate, phosphate, and trace metals into the lighted surface layers where photosynthesis an support phytoplankton growth. The stability of stack ing, the depths of the prominent pycnoclines (levels of rongest density change and, thus, most stable stratifica tion), and the forces available to drive upward flow apweling) and vertical mixing, vary strongly over th orld ocean, affecting the photosynthetic produchall al of distinctive regions. This is a thene welogic to repeatedly, a fundamental aspect of biog the ceanography. Here, we give just one example of the he variation of ocean biomes, we will consider the ecological consequences of different stacking patterns and mixing egimes. In the Atlantic north of the Gulf Stream, winte winds often mix the upper water column to below 300 m naking the profiles (Fig. 1.2; see also Fig. 11 23) of T, S, utrients, and oxygen vertical to that depth. That is, thos tonditions are homogeneous up and down. The is residual stratification below that depth, stratification that

Fig. 1.2 (a) Winter and (b) summer profiles of temperature ($(7$) and salinity (S) in the subarctic Atlantic O cean south of Greenland. Note the differences
 http://www.nodc..noaa.gov/OC5/WODO9/Pr_wod09.html.)
the mixing does not overcome. Note that during mixin there is net temperature gain in the deeper reaches, ne cooling above. Whds and mixing in the It some point solar heating warms and stabilizes an upper her. bere is orrong stratication, primarily maintained by the
 la $35-45 \mathrm{~m}$ termed a seasonal thermocline Blooms tend to occur after stratification is established at me dallow enough to keep phytoplankton in the sumlit upper zone most of the time.

Atmospheric gases also dissolve

 in seawaterNitrogen, oxygen, argon, and carbon dioxide all dissolve in seawater, and all of them obey Henry's Law: the equilibrium solubility is proportional to the partial pressure (in suitable units such as atmospheres) in the air above the water surface. The proportionality constant changes inversely with temperature, and for oxygen is approximately two-fold greater at $-1^{\circ} \mathrm{C}$ than at $40^{\circ} \mathrm{C}$. That is,
saturation concentration decreases not quite linearly with rising temperature from $360 \mu \mathrm{molkg}{ }^{-1}$ at $-1^{\circ} \mathrm{C}$ down to
$165 \mu \mathrm{~mol} \mathrm{~kg}{ }^{-1}$ at $40^{\circ} \mathrm{C}$. Salinity reduces the saturation concentration; for example, at $0^{\circ} \mathrm{C}$ and salinity $=34$, satura centration; for example, at $0^{\circ} \mathrm{C}$ and salinity $=34$, saturasalt effect is slightly less strong at higher temperature) Units used in quantifying oxygen concentration most often now are $\mu \mathrm{mol} \mathrm{kg}^{-1}$ seawater; in an era not very long back hey were ml_{2}, strliter ${ }^{-1}$, referring to the gas volume at "standard temperature and pressure" of $0^{\circ} \mathrm{C}$ and 1 atmosphere. Both units (and also mass units, parts/million, partial pressures, . . .) appear in useful literature. Oxygen concenration can be measured with good precision and to low values by the Winkler titration, a series of redox reactions that are relatively simple to carry through to a sharp end point. It can also be measured with Clark electrodes and recently with optodes, in which luminescence from molecules embedded in an oxygen-permeable plastic is variably quenched depending upon adjacent oxygen concentration, and is measured by a light meter. Optodes have fairly long response times (many seconds), depending upon the perme able of mor table over long periods and can cover the seawater con
If oxygen-dep
If oxygen-depleted water is brought into the surface nixing layer and churns against the interface with the tmosphere, its oxygen content will rise toward saturation. However, the equilibration occurs relatively slowly, mostly because the mixing layer can be thick, but also because the xygen itself has no particularly great "drive" around reaching saturation. The subjects of gas exchange coeffi-都s and "piston velocities" are left to texts on chemica (e.g. Pilson 1998). Despite the slow oxygenudes where thost deep water is "formed at har of oxygen for much of the subsurface ocean is close to the coldest possible saturation level.
Once oxygen is in solution, consumption by respiration of everything from bacteria to tiger sharks begins. Not al life depends upon oxygen (there are anaerobic microbes), but larger organisms with high activity levels and high metabolic rates depend upon oxidative respiration, a func tion primarily carried out in eukaryotic organisms by mitochondria - cell organelles specialized for this function Down in the stratified layers well below vertical mixing rizol ften a very distace, away Thus as orgic matte inks in these lays ind is eand the oxyge evels decrease. Additional decrease comes from animal hat move between feeding near the surface and resting or hiding at depth, where those fish, squid, and plankton continue to use oxygen. Depletion generates oxygen minimum zones in intermediate levels of the water column, particularly in the Arabian Sea and Pacific and most educed from saturation in the Pacific toward the north (Plate 1.1).

There are also some nearly or completely anoxic layer eneath upwelling areas, particularly parts of the Per Current and the Arabian Gulf. In the latter sites, dissolved oxygen as O_{2} can be completely exhausted. Microbes in the nexic layers continue to respire, at least to a point, using ctivity releases sulfide, S^{-}, and is toxic to other life-form and readily detected by odor in water collections. The imits of toleration for hypoxia among aerobic animals are ariable among animal groups, species, and individuals. Mortality rates rise in bivalve mollusks and brittle stars a $\left[\mathrm{O}_{2}\right] \sim 1 \mathrm{mlliter}^{-1}\left(45 \mu \mathrm{~mol} \mathrm{~kg}^{-1}\right)$ with sharply greater mor tality (often after emergence from the sediment) at $<0.5 \mathrm{mll}^{1}$ iter ${ }^{-1}$ (Diaz \& Rosenberg 1995). Similarly low oxygen levels cause death or emigration in many other groups. Some pelagic animals that feed near the sea surface can migrate into very hypoxic, even anoxic, zones in order abs sqid Dosidicus gisas) of the eastern tropical Pacific nd lately, the California Current It is equiped with ver inely divided floments in a very hare sill for uptake of dily oxes. Dosidizus also hatity for olonged survival by moxic metabolism, generating a "oxygen debt" that suitably adapted physiology (and th high exchange capability of the gills) relieves very quickly on return to the surface. In addition, the squids and mid water fishes that do spend time in such layers move ver very slowly. Movies of predator-attack and prey-escape events look like animal tai-chi exercises
In recent decades, hypoxic and anoxic zones have appeared in many coastal areas, particularly offshore of major rivers like the Mississippi, Rhine, and Chang Jiang This has been attributed to eutrophication near shore by agricultural nutrients washing into the coastal zone, greatly increasing algal production and subsequent oxygenconsuming decay above the seabed. Such coastal anoxia kills fish and benthos. Kills of continental shelf fauna by hypoxia have also been observed in recent times in areas where no obvious anthropogenic eutrophication has occurred. Off coastal Oregon, USA, recurring hypoxic epi sodes during the 2000s, some involving die-offs of fish and benthos, have been attributed to greater onshore transport ones. Because mowe orgaic metter has been oxidized in such waters, they also cottin more nutrients, which may have enhanced production of organic matter that the mereases oxygen demand and depletion In the Oregon case, a change in cycling between upwelling and relayatio events may have reduced the flushing of bottom layers with oxygenated water. Ocean ecology can be complex, and explanations of events can be both fuzzy and uncertain. Processes occurring on just one stretch of coast, or in just one fjord, may be more important there than the interactions that typically determine conditions and ecological elationships.

The types and importance of

fluid drag

The mass density of seawater (any water) has other ecological effects, particularly the requirement for force to accelerate it aside during swimming. This force requirement produces what is known as inertial drag. It is the dominant resistance to sinking through water by large, dense objects and to swimming forward by larger, faster animals. There is another source of drag, which is the requirement for force to rearrange the intermolecular connections among water molecules in order to move through them. That is called viscous drag. The relative importance of inertial and viscous drag is expressed as a ratio, the Reynolds number, Re , which has the product of factors proportional to inertial drag in the numerator and the water viscosity in the denominator. Inertial drag is proportional to the linear size dimencion perpendicular to the path, to the velocity (ψ) relative to the water, and to the water density (ρ): lv ρ. The viscosity (as discussed here, the dynamic viscosity) is the viscosity (as discussed here, the dynamic viscosity) is often η), with SI units of Pascal•s (Pa•s) $=$ Newton $\cdot \mathrm{sm}^{-2}$ Work with the units here. After some conversions, it will become apparent that those of the Reynold's number
 Re is a dimensionless number.
Experimental work (also some theory) shows that at high $\mathrm{Re},>\sim 100$, viscosity can be neglected in drag calcula ions, at least for processes like swimming, because inertial offects are so dominant. At Re less than ~ 1, inertial effect re small and viscous effects dominate. Algal cells, other protists, and many smaller metazoans like clam larvae o opepod nauplii, live in an apparently very viscous world, ecause both their l and v values are small. This has impor ant effects on the mechanics of swimming and of approach ing nearby food particles. The viscosity of water (and seawater, the effect of salt is small) varies not quite linearly with temperature, from $\sim 0.65 \mathrm{mPa} \cdot \mathrm{s}$ (millifascal.s) at $40^{\circ} \mathrm{C}$ $0 \sim 1.8 \mathrm{mPa} \cdot \mathrm{s}$ at 0 C . This difercer ans he work that ciliated or flage ove at 0 C compared to $40^{\circ} \mathrm{C}$.
so, how does swimming work? When drag is principally crita, so is the force exertion of an animal agains he intended trajectory, and pushes a mass of water back ward There is an equal reaction on the mass of the fish o cal moving it forward. There are often elegant details. Fo example, a tuna that can swim at $\sim 20 \mathrm{~m} \mathrm{~s}^{-1}$ has an idea lusiform shape, minimizing the distance that water must be icecelerated to the side and then back to the center line ehind as it passes through the water. It has scales alon (8) tail peduncle that lie flat during initial acceleration, ond then extend out to initiate turbulence at intermediate ipeeds. That is useful because drag actually drops sub

Fig. 1.3 Successive positions in the power and recovery strokes of cilium.
stantially at the transition from smooth laminar flow along the skin surface to turbulent churning. To avoi drag from laterally extended pectoral and dorsal fins, tuna can pull them flat against the body into precisely fitted grooves.
Swimming by ciliated and flagellated cells is substantially different (Purcell 1977). Mass moved behind by a flagellum stroke is so small that the forward reaction is ineffective, But motion is achieved from the differential in the amount of intermolecular attractions that must be spatially rearranged between sliding a tube (a flagellum, say) lengthwis versus sideways through water. For reasons that may or ay not be intuitively obvious (deper 1 miring), the drerence is 1 , $\}$ and 1 with most of the motion nd then puled back ford (Fig)
arallel to the trajectory (Fig. 1.3)
or complete e differnial shes arl along the length. The viscous ariting the difference betweenead. An alternate mode haft drag is use of flagellae wound into spirals. When otated relative to the cell, often by molecular-scale rotar "motors", the vector component of the motion that is erpendicular to the axis of the spiral is sufficient to drive he cell steadily forward. There are many features of wimming (or filter feeding for that matter) in the viscou mode that are unexpected based on our experiences of swimming. When dominant, viscous drag is sufficiently powerful that there are no eddies shed aft or to the side There is no inertial "carry" comparable to the long forward drift you experience after a swimming stroke. Rather, whe force is not being exerted, there is remarkably close to
zero continued forward motion; the stop is effectively zero continued
instantaneous.
These two modes of swimming appear to be similar in some respects. Both ciliary motion and propulsion by lateral fins involve pushing back with a high drag element, then sliding it back forward by feathering or switching angles. The sources of the effective drag force, however are substantially different. Some plankton, most particularly copepods, exploit the interface between drag dominated by inertia and drag dominated by viscosity. Because they are of intermediate size, with $l=0.1$ to 1.0 cm , they can accelerate to sufficient v to enter the realm of inertial swimming (raising the Re), using paddle-like feet and tailfan sweeps to accelerate to achieve extremely fast relative speeds (hundreds of body lengths s ${ }^{-1}$). However, when power strokes are stopped, drag rapidly drops into the viscous range, with the advantage that at rest the sinking rate is very slow despite a moderate excess of density orer the surrounding
vertical location
That brings us to sinking rates. A cannonball that missed its target (most of them did) would accelerate downward until inertial drag equaled the gravitational force attracting terminal velocity $\left(>100 \mathrm{~m} \mathrm{~min}^{-1}\right.$). The effective mass would of course, be reduced by buoyancy from the water, the dif ferential density determining the "effective" mass. Thus, a sufficiently hollow, perhaps aluminum, cannonball might move up not down after splashing in. The size of the cannonball makes only a miniscule difference. Sinking of a tiny fecal pellet from a zooplankter, partly filled with dense opal from diatom shells, will be affected primarily by viscous drag, and for a spherical fecal pellet the sinking velocity, V_{s}, is given by Stokes's Law:

$$
V_{\mathrm{s}}=\frac{2}{9} \frac{\left(\rho_{\mathrm{p}}-\rho_{\mathrm{f}}\right)}{\mu} g R^{2},
$$

in which g is gravitational acceleration, ρ_{p} and ρ_{f} are the densities respectively of the pellet and the fluid, R is the pellet radius, and μ is the dynamic viscosity. A modest dif ference from this depends upon the shape of the pellet, but use of an equivalent diameter of a sphere of the same is required (!) but left to your atention Notice that the hrger the particle, he faster it sinks, with $V_{\text {s }}$ varying with the square of the linear dimensions. If ρ is less than ρ then the particle will rise. Consider the impact, mentioned above, of temperature on μ : a particle of ρ, will sink about three times faster at $40^{\circ} \mathrm{C}$ than at $0^{\circ} \mathrm{C}$, despite the effect of T on ρ_{6}. Stokes's Law is a simplified (viscous drag only) version of the Navier-Stokes's equation, the version of Newton's acceleration law $F=m a$, to which hydrodynamicists have given lifetimes of thought and a googol $\left(10^{100}\right)$ of computer calculations.

Fig. 1.4 A vertical profile of average velocity upward from a sandy-silt seabed at 199 m through the viscous boundary layer, in which velocity
increases linearly with distance above bottom (inset), and then on upward (larger graph) through the "buffer layer". In the latter the velocity approaches that at a distance, $\sim 10.5 \mathrm{cms}^{-1}$ here, within about 20 cm . Measurements were with a heated-thermistor velocity probe by Caldwell and Chriss (1979) Very mild turbulence $\left(\pm 0.5 \mathrm{cms}^{-1}\right.$ at 20 cm , much less in the viscous layer see Chriss \& Caldwell 1984) has been averaged out

Drag effects take on special characteristics at boundaries between water and solid surfaces, even soft ones like jellyfish skin or algal cell membranes. The fluid alongside, except in shear regimes strong enough to induce cavitation, remains stuck to the surface, so that exactly at the surface there is no relative motion. This is the "no-slip" condition. Velocity relative to the solid surface, the scales of a fish, say, increases away from the surface, reaching the full background relative velocity asymptotically at a considerable distance out. The zone of outward", aceleration (rg. 1.4) very close to a surface, up to abot 1 cm but varying with he distant velocity, the local velocity increases linealy outward because viscous effects are dominant, and in this range viscosity damps turbulence in the flow. Away 0.5 to range viscosity damps turbulence in the flow. Away 0.5 to become more important, reaching an asymptote several dm out, or, in the case of the seabed, several dm up. Velocity in this range plots linearly vs. a logarithmic scale of distance from the surface. With distance from a surface, the potential for turbulence in the flow increases.

Boundary layers have many ecological effects that are well reviewed by Mann and Lazier (2006). They require that a swimming animal, particularly a small one, effectively must push along a mass somewhat larger than itself. It adds further dominance to the role of molecular diffusion for final transport of molecules to gills and cell surfaces. It means that small hairs side-by-side in a palisade, such as leg, will have intersecting boundary layers and effectively form a solid paddle. Similarly, animals filter-feeding with setal or mucus meshes must generate substantial pressure to force water through their webs by narrowing the boundary layer of each strand. Boundary layers are less extensive at greater relative velocity. Because of boundary layers, drag tending to tip over benthic animals extending up into passing currents or to pull them out of the sediment is much reduced. As already stated, they mean that the supply of nutrients to algal cells depends upon molecular diffusivity, that is on the background concentrations, the potential cell-surface uptake rates and the solute-specific diffusivity constants. This list of boundary-layer effects is far from exhaustive.

For an extensive discussion of hydrodynamic effects on biological processes, refer to Steven Vogel's (1996) book Life in Moving Fluids.

Effects from having sun above,

water below
Ocean water is held against the Earth by gravity, filling Oceans water with surfaces almost parallel to the so-called asins and with surfaces almost parallel to the so-called by the dynamics of flow on the curved and rotating form of the planet and, of course, except for surface waves These sheets of water, thin relative to the Earth's diameter, ure thus illuminated from above by sunlight and on some dights by moonlight. Light that is not reflected back into the atmosphere (and in part back into space) is progressively absorbed by the water and by both dissolved and particulate substances. Absorption increases with depth (z), ollowing Beer's Law: $\mathrm{d} E / \mathrm{d} z=-\mathrm{k} E$, for which the solution is $E_{t}=E_{0} e^{-k z}$. That is, irradiance, E, declines exponentially with depth. The constant, k , an extinction rate for the overall spectrum of sunlight, has a value of $0.067 \mathrm{~m}^{-1}$ for ust seawater, and actual values in oligotrophic subtropica yres are remarkably close to that when chlorophyl conentrations are on the orders. More
 welb of ir lime. Hower, k also varies with the wave fengths of light, The wavelength of maximum transmission ors warer in in clear oceanic waters is around 435 nm (bluc) Other wavelengths are more rapidly stripped out, ventually leaving only blue, with the only color vision
distinguishing shades of blue below about 100 m , and distinguishing shades of blue below about 100 m , and
systems of photosynthetic and visual pigments must absorb near 435 nm . They do, mostly shifted toward the green at 465 nm (the extinction rate is almost constant from 410 to 475 nm). In neritic regions the inclusion of larger amounts of colored, dissolved organic substances (yellow transmitting, termed Gelbstoff or gilvin) and of phytoplankton (green transmitting) causes a shift in the wavelength of maximum transmissivity toward the green. Absorbance rapidly increases for longer wavelengths.
Actually all absorption of light by water has a minimum with respect to wavelength, a "window of clarity" (Yentsch 1980), right at the peak range of wavelengths of solar irradiance (Fig. 1.5) the wavelengths of visible and photo synthetically active light. This match of window and available light is one of the remarkable coincidences that make life on Earth possible. The coincidence of the solar spec . 10 the lis tuning of the light-absorbing pigments energizing photo sum of light available at even moderate depths. The only light reaching dept below 100 m or so peaks very narrowly in the blue so visual pigments of deep-sea fish and invertebrates (shrimp, squid) are adapted for generatio of visual nerve impulses by absorption of those specific wavelengths.
The ocean layer that is sufficiently illuminated to support positive net photosynthesis, meaning more organic-matte generation than phytoplankton will respire themselves, is often considered to extend down to about the level receiv ing 1% of mid-day irradiance, and is termed the euphotic zone. It is not fully dark below that depth, and in clear tropical waters net photosynthesis may extend somewhat deeper, reaching to 120 m or so. In waters of a natura ecosystem, much additional absorbance comes from dis persed cells containing pigments, shoaling the euphotic zone depth. The effect of pigments is roughly proportional to chlorophyll concentration; chlorophyll will add abou $0.02\left(\mathrm{~m}^{-1}\right)$ to the absorbance coefficient in the blue (otherwise the absorbance minimum) for each $1 \mu \mathrm{~g} \mathrm{liter}^{-1}$. An extended treatment on the effects of pigments on
sorbance spectrum can be found in Morl (1991)
Most bioluminescence also has a narrow spectrum in the vinity of 465 nm . In the deep sea, that makes possib and shrimp of downelling iradiance to obliterate silhouwhe molt from eh ow In other applications, such as signaling between individuals, it would allow transmission of "messages" to the maximum possible distance. More will be said about the interaction of light with photosynthetic pigments as function of depth when we discuss primary production More will be said about deep vision and bioluminescence when we discuss mesopelagic habitats. The limits of wate clarity (Fig. 1.5) are also important, both eliminating almost

 and
and near IR (data of Smith \& Baker 1981). (c) Spectrum of radiative solar energy arriving at the surfaces of the atmosphere and ocean, with the differences laber alkording to the principal absorbing gases in the atmosphere accounting for the difference. (Repeatedly published without attribution. Reproduced here
lomen
lomen
all of the UV irradiance capable of damaging organic molall of the UV irradiance capable of damaging organic molecules (like DNA, for example) in the first few meters and red wavelengths.
Of course, the sun does not shine down from exactly the zenith on more than a very small part of the Earth at any time and there, in the tropics, only at local noon. The rest of the time, sunlight passes through the atmosphere to the surface at substantial angles that vary seasonally and through the day. Moreover, the familiar seasonal cycles of daylength, that are accompanied by changes in height of the sun above the horizon, change the depth of light penetration, duration of illumination for vision, the irradiance available in the day for photosynthesis, and the amount of surface layer heating. The lower the sun angle, the greater the area over which its light is spread, reducing the arriving photons per unit area. Many units are used in irradiance measurement. Those most commonly seen in oceanographic literature are watts m^{-2} (a measure of power, that is irradiance) moles of photons arriving at a one square meter surface per second (with energy or power
depending upon wavelength). "Photosynthetically active depending upon wavelength). "Photosynthetically active photosynthesis, is often determined in μ mol photons $\mathrm{s}^{-1} \mathrm{~m}^{-2}$. photosynthesis, is often determined in μ mol photons $\mathrm{s}^{-1} \mathrm{~m}^{-2}$.
The equivalent unit μ einsteins $\mathrm{s}^{-1} \mathrm{~m}^{-2}$ is also in common use. A key impact of this vertical arrangement, the sun heating the ocean from above, is the installation of relative buoyancy at the sea surface, adding stability to the stratification of the water column. Stable stratification limits vertical mixing by winds and tidal energy, and reduces the upward transfer of dissolved nutrients. Daily and seasonal variation in stratification and vertical exchange are key aspects of ecological processes in the sea.

Taking the individual or event-

by-event viewpoint

A good deal of interest is expended in biological oceanography on bulk rates and quantities: the amount of photosynthesis occurring under a square meter of ocean surface, the biomass of zooplankton ($\mathrm{mg} \mathrm{m}^{-3}$ or $\mathrm{g} \mathrm{m}^{-2}$) and its sea-
sonal variations, the rate of downward "rain" of particulate organic matter into the deep sea, and more; the list is atensive. (cher, ond ates of encounters with prey organisms (in the case mostly coperods) or with other chaetognaths of the same species that are also ready for mating. From the viewpoint (although it doesn't "look" per se) of a nitrogen limited algal cell, the key to its growth potential is the likelihood that an ammonium or nitrate molecule will come adjacent to its cell membrane, that a ferric ion will diffuse near enough to bring it on board to act a a cofactor for nitrate reductase (to convert nitrate to ammonium). When the encounters needed for life pro esses are not occurring fast enough, there will be no phe tosynthesis, no food, no growth, no reproduction, something, and ecosystem function will wind down. Looke at in this way, what matters are the event rates, and thos depend in the first order upon the product of the concentrations of the two entities that must meet for an ecological interaction. Consider, for example, mating encounters zooplankters. Copepods are the dominant small crust
 functions in separate individuals). So, the probality of mating encor in interval can be written
$P_{\mathrm{m}}=\beta$ [males][females],
in which brackets indicate volume concentrations and β is termed an "encounter kernel". That terminology has been developed extensively, and with many examples, in a book by Thomas Kiørboe (2008). While he deals with plankton, as his title implies, the viewpoint can apply anywhere in marine (or any) ecology, including in the benthos.

A great deal of complexity can enter into establishing the value of β, by which we mean both establishing it in reality, for the organisms in the field, and in estimation of it by ecologists. We can think about, observe, and experiment upon the component factors affecting β, but in most cases we will not be able to measure every significant aspect of the encounter situation, especially not in the ocean where we inevitably remain rather clumsy observers. We are not even very good at measuring the effective concentrations. Of course, organisms from bacteria to whales are very good at raising their own concentrations at spots with high concentrations of the molecules, prey, or mates they need to encounter. Some of them are also very good at dispersing away from high concentrations of their predators, or only visiting those sites when the predators are somehow disabled, pentrs for and
 Despite de iff 1 lies, sudying what metters to individual organisms in obtaining the encounters they require gener-
tes some of our best insights. As Kiørboe has shown, tryin to find explicit functions to quantify β can be a fruitful mode of research. Among many variables, the relativ motions of the encountering individuals (from molecul Signaling are often the most critical corpe copepod mating when the female lays out tracks of attractant phe omones to alert males to a mating opportunity. Thus, in many cases β involves increasing apparent individual size, effectively a modification of volume concentration. The range of possibilities exploited in nature is wide. Sometimes attempts to apply this viewpoint will be explicit in the following chapters; just as often it will be an implicit alternative you can apply in thinking about what matters to life in the oceans.

General terminology for habitat
 partitions in the ocean

Habitats within the water column are termed pelagic, and seafloor habitats are termed benthic. Organisms living in pelagic zones are plankton (defined above) and nekton (from $\eta \varepsilon \kappa \tau \circ \varsigma$), large animals that swim well enough to move independently from displacements by horizontal currents. Successive pelagic layers downward are termed the epipelagic, mesopelagic, bathypelagic and hadopelagic zones. Respectively, they extend to about 200 m , to 1000 or 1200 m , to perhaps 4500 m and to the bottoms of for useful vision, which strongly conditions life within it. Below that solar photons are uselessly rare and for some reason even bioluminescence is mostly removed from the adaptive repertoires of bathypelagic animals. Layers below the upper epipelagic, which is the euphotic zone, all depend upon downward transfer of food as sinking particles and vertically migrating animals.

Organisms living on the bottom are termed benthos. Benthic (the adjective) and benthos apparently are versions of the Greek "bathos" ($\beta \alpha \theta \circ \rho$), meaning depth. Benthic habitats share characteristics with both pelagic and terrestrial ones. They are (more-or-less) solid substrates, like the land, but they are continously submer the same as Thus, the basic physiological probl the those for pelagic ocean he, bertically) of and habitat operas (as well. Benthic habitats also grade downward in series: intertidal subtidal (shallow bottoms near shore), bathyal (continental slope depths), abyssal and hadal (trenches).
The solid Earth has two principal surfaces, the continental shields above sea level, and mostly at the level of steppe or lowland rainforest ($\sim 300 \mathrm{~m}$ elevation), and the abyssal

Fig. 1.6 Hypsographic curve for the world's oceans. Length along the abscissa is proportional to the area occupied by a given depth in the world's oceans. For example, depths in the abyssal category occupy about 60% of the seailoor (After Hedgpeeth 1957)
plains at depths of about 4500 m . This deep-sea zone occupies about 60% of world ocean area (Fig. 1.6).
There are some rocky deep-sea sites, particularly a spreading centers, but most of the ocean is underlain by sediment-covered bottom 2000 to 5500 m below the surface productive layer. The extent to which both pelagic and benthic habitats have been studied with respect to the organisms iving in the thile deep ecology declinestapity access and sample, they have been studied and much is known about them.

A few mathematical reminders

| The exponential function

This is, of course, basic mathematics, but, to refresh the concepts, we provide these notes. The exponential function appears repeatedly in biological oceanographic discourse. It appears repeatedly throughout science. It appears in analytical chemistry as Beer's Law, discussed above - the relationship between light absorption by a not quite fully transparent medium of transmission and the length of the absorbing column of medium. It appears in population yynamics, nuclear decay theory, everywhere.
tial. We use the values of 10^{x} where x is an indeg enen iial. We use the values of 10^{*} where x is an integer to give the place values in our usual number system;

\boldsymbol{x}	$\mathbf{1 0}^{\boldsymbol{x}}$	$\mathbf{2}^{\boldsymbol{x}}$
$\mathbf{0}$	1	1
1	10	2
2	100	4
3	1,000	8
4	10,000	16
5	100,000	32

However, when the term "exponential function" is invoked, the meaning frequently is the sequence of value for $y=\mathrm{e}^{x}$, where "e" is the irrational number 2.71828 . This particular exponential function has the special property that the slope of the function (the change in y divided by the change in x, or $\mathrm{d} y / \mathrm{d} x$) at $x=0$ is 1 , and that the [slope of $\left.e^{x}\right]=\mathrm{de} / \mathrm{d} x=\mathrm{e}^{\mathrm{x}}$ at all x. This function turns out to be (yes, lots of mathematics is hidden in that phrase) the exact rela tionship for any compound-interest problem when bank interest is compounded continually. The important thing isn't the compounding interval, but the interest rate (however much banks may try to convince you otherwise). Let's try an example. Let the interest rate, r, be 8% per year. If interest is compounded once per year, then the principal at T years $P_{T}=P_{o}(1+r)^{T}$. If it is compounded n times per year, then it $P_{T}=P_{0}(1)$. he principal at T is $P_{T}=P_{\mathrm{o}} \mathrm{e}^{\prime \prime}$
Let P be $\$ 1000$ (or yen, or rubles, or euros):

	Values after \boldsymbol{T} years of compounding interest \boldsymbol{N} times per year				
\boldsymbol{T}	$\boldsymbol{N}=\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\boldsymbol{\infty}$
$\mathbf{0}$	1,000	1,000	1,000	1,000	1,000
$\mathbf{1}$	1,080	1,082	1,082	$1,082.4$	$1,083.3$
$\mathbf{2}$	$\mathbf{1 , 1 6 6}$	1,170	1,171	$1,171.7$	$1,173.5$
$\mathbf{3}$	$\mathbf{1 , 2 6 0}$	$\mathbf{1 , 2 6 5}$	$\mathbf{1 , 2 6 7}$	$1,268.2$	$1,271.2$
$\mathbf{4}$	$\mathbf{1 , 3 6 0}$	$\mathbf{1 , 3 6 9}$	$\mathbf{1 , 3 7 1}$	$1,372.8$	$1,377.1$

Even continuous compounding doesn't get you much In fact, a change from 8% to 8.3%, i.e. a small change in he annual rate, is allit takes to cover all the possible effect more frequent compounding. This continuous compe decline in concentration of phytoplankton when animals fe fitering parts of the water and returning the water to the suspending volume.
Let us expand slightly on the mathematics for downward light extinction; the results are so important that immediate review is in order. The continuous-interest formula (o exponential function) turns out to be the solution (or inte gral) for an equation for the slope at any point of the curve of light intensity vs. depth. Such equations are differentia equations, and their solutions when they have simple one re always functions, such as the exponential. The absolute mount of change in the light between two depths depend upon: (i) the amount of light there is to be absorbed, (principal); (ii) the fractional rate at which it is absorbe per meter, k (in this case a rate for negative interest); and iii) the thickness of the absorbing layer, z ("time" at inte est). We write:
$\mathrm{d} E / \mathrm{d} z=-k E$.
Differential equations of this sort are called "first order" they involve first derivatives), "separable" differentia equations (using this as an example, they can be rearranged quave $\mathrm{d} E$ and all functions of E on one side and $\mathrm{d} z$ and ll functions of z on the other). They are "solved" by rear ranging, then integrating:

$$
\mathrm{d} E / \mathrm{d} z=-k E \Rightarrow \mathrm{~d} E / E=-k \mathrm{~d} z \Rightarrow \int_{\text {surface }}^{z} \frac{\mathrm{~d} E}{E}=-k \int_{0}^{z} \mathrm{~d} z
$$

The integral of $\mathrm{d} E / E$ is natural $\log E, \ln E$. The integral of $\mathrm{d} z$ is z. Thus, the integrals become:

$$
\int_{\text {surface }}^{z} \frac{\mathrm{~d} E}{E}=-k \int_{0}^{z} \mathrm{~d} z \Rightarrow \ln E \prod_{0}^{2}=-k z \prod_{0}^{2}
$$

And finally, taking differences and antilogarithms, the "solution" is $E_{z}=E_{0} 0^{-k z}$, in which E_{z} is the intensity remaining at depth z relative to the just-below-surface intensity of E_{0}.
Populations above a reasonably small size grow exponentially, statistically exactly so if reproduction isn't synhronized in some way. When it is, then the exponential pattern appears for counts at equal intervals measured in eproductive cycles. If we use N for population numbers,
 birth (b) and death (d) can occur as exponential functions, so we can write: $r=(b-d)$. If $N(\mathrm{t})$ and b are known, then you can solve for d, or conversely.
Examples of the exponential function will continue to appear in this book. Please practice with it, using a calculator. Get a very clear understanding of its characteristics.
Problem 1: It is desired to get an idea of the growth rate of some phytoplankton cells. A few are inoculated into a ar of sterilized seawater enriched win varous fer compounds (nitrate, phosphate, etc.) At the (w) dere 800 . What is the exponential rate of growth? What is dobling What is the formula relating hin to the expone me
doliry line to ". . "
oubling time to the exponential rate of growth?
prion is the logistic equation, often used to characterize he increase of a population up to the limiting carrying capacity of its habitat. The logistic represents that by reduc ing the natural rate of increase, r, according to the fraction of the carrying capacity remaining:

Unlimited exponential increase	Logistic model
$\mathrm{d} N / d t=r N$	$d N / d t=r(1-N / K) N$,

where K is the carrying capacity, and N / K is the fraction of the "resource space" used. Find the solution to this
equation. Serious mathematics students will determine the integral. Hint: it's a straightforward, first-order, separabl differential equation. Review integration by parts. Other should not be embarrassed to use an integral table.

II Limiting factors

The notion of limiting factors is often traced to a German agricultural chemist named Baron Justus von Liebig (18031873). He was one of the early organic chemists, and he worked on the elemental content of plants in one of his gous rexime wa growing a plant in a pot using known weight of soil. By later separating the plant and soil, he was able to show that the plant was made up of somehing other than constituents of the soil - invoking a conservation law of a sort. He was able to show that the plant was derived from water and air. His own statement of the oncept of a limiting factor is now termed "Liebig's Law of the Minimum":
". . . growth of a plant is dependent upon the amount of the food stuff which is presented to it in minimum quantity."
We would add the qualifying phrase, "in proportion to its need for it". Note the singularity of this limiting factor lural, interacting factors are not mentioned. The impor ance of interacion ang toling
There ise ony dexa in ecology
there are many examples of limiting factors as they ffect living things. The characterizing signature of an anal sis of a limiting factor is a hyperbolic function. Classic f feeding. In general, food eaten and growth both follow such hyperbolic patterns as food becomes more readily vailable. Thus, food availability is said to be a factor limitng growth. At the asymptote, other factors, including the intrinsic capacity for growth, become limiting. Hyperbolic elationships play a large part in marine ecology, and we use several functional forms to represent them in ou models. Popular ones include:
1 Two linear segments meeting above the point of maximum curvature;
2 the Michaelis-Menten curve (Fig. 1.7) from enzyme kinetics (also known as the Monod function); and 3 the Ivlev equation.

In some instances there is little to choose among these epresentations, since the scatter of the data is usually grea The choice is made on the basis of convenience to the application. We will develop the list above so you have a eference. Two linear segments can usually be fitted by eye These will represent the two basic parameters of the rela tion: the asymptotic growth rate and the slope of the initia response to increase of the limiting factor

Fig. 1.7 Growth rate of the diatom Asterionella apponica as a function of relationship. (Data and curve parameters from Eppley \& Thomas 1969.)

The Michaelis-Menten equation is borrowed from bio hemistry. Enzymes are often characterized in terms of thei reaction kinetics. The data are measures of reaction velocity at various substrate concentrations. Reaction rate takes the form shown in Fig. 1.7.
Suppose there are a number of active sites on an enzym to which a substrate can bind, and let the concentration o those sites be [E]. Binding is the slowest (limiting) step in conversion of substrate to product. The reaction $+S \leftrightarrow E S \rightarrow$ Product. The issociation constant for the nzyme-substrate complex, $E S$, is $\mathrm{k}_{\mathrm{s}}=([E]-[E S] \mid[S][E S]$ Solving for [ES]:

$$
[E S]=[E][S] /\left(\mathrm{k}_{\mathrm{s}}+[S]\right)
$$

ince $E S$ will be transformed to product at a rate propo tional to [ES], we have
$V=$ Reaction Rate $=c[E S]=c[E][S] /\left(k_{s}+[S]\right)$,
where c is a proportionality constant. The maximal rate, $V_{\text {max }}$, will be attained when $[E S]=[E]$, that is when $V_{\text {max }}=c[E]$. Substituting, we have the Michaelis-Menten elation:

$$
V=V_{\max }[S] /\left(k_{\mathrm{s}}+[S]\right)
$$

The graph of V vs. $[S]$ is hyperbolic with asymptote $V_{\text {max }}$ When $V / V_{\max }=0.5$, then $[S]=k_{s}$. Therefore, k_{s} is called th "half-saturation constant". It can readily be determined, and it is often used as a simple measure of enzyme substrate
ffinity. It can be used to characterize the slope of the initial portion of an ecological relationship of hyperbolic forn values denot affinity, or slow approach to saturation
The Ivlev (1945) approach is to suppose that with great plethora of food, animals wore At lesser food abun dhey will at fractionlly less. The maximum ratio ,

```
Ration = R max (1- - - < \rho ),
```

where food density is ρ and λ is a constant, the Ivlev constant. To derive this, differentiate with respect to ρ, and then establish an argument for assumptions leading to the resulting differential equation. It is just as useful to simply examine the approach of Ration to $R_{\text {max }}$ as ρ increases (the limit of $\mathrm{e}^{-\lambda \rho} \rightarrow 0$ as $\rho \rightarrow \infty$.
Other functions for hyperbolic relationships are in use and some will appear later in the text, for example the hyperbolic tangent function recommended by Jassby and Platt (1976) to characterize the increase of photosynthetic ate toward an asymptote with increasing available irradiance. When hyperbolic ecological or physiological data are strongly variable, it may not matter which deterministic unction is used to represent the central tendency responses to some forcing vaiable. The best choice depend upon matherica
Threshold effects are frequent in ecological relation ships. It is sometimes found, for example, that animals won't feed at all unless there is more than some minimu
 are readily added to either the Michaelis-Ment (here restated in terms of food) or Ivlev equations:

$$
\begin{aligned}
& R=R_{\max }\left(\rho-\rho_{\mathrm{t}}\right) /\left(D+\rho-\rho_{\mathrm{t}}\right), \text { and } \\
& R=R_{\max }\left(1-\exp \left[-\lambda\left(\rho-\rho_{\mathrm{t}}\right)\right]\right\} .
\end{aligned}
$$

In both, ρ_{t} is a threshold food abundance for feeding. Both of these equations must be applied only where $R \geq 0$; that s, where $\rho \geq \rho_{\text {t }}$ use the equation, otherwise $R=0$. Failure to follow this restriction (as in computer code for ecosystem models) will induce "negative" ingestion, nutrient uptake, ... , all of which have unrealistic stabilizing effects on modeled ecological interactions.
Limiting factors are usually thought of as material or energetic requirements that an organism must draw from the habitat. However, the response to varying levels of limiting factor availability may be modified by other factors like temperature, salinity, ultraviolet radiation, frequency of large rocks in the pat wis nemple, growh rate (for co par it
age and growth already completed (body size). Growth ate does vary with food availability in the expected hyperlic fashion, but, at least for small ectotherms, the heigh of the asymptote drops with increasing temperature. At higher temperatures they have greater metabolic costs, leaving less nutriment to support growth. In sum, contro of most processes depends upon many variables in the habitat.

Deterministic functions (and
 models) vs. real data

Recall that "functions" defined mathematically assign one value of an output variable for each set of input variables supplied to it. They are very rigid things, said to be determistic. There are also "relations" that assign a set or range f values for given inputs, but those are much harder to use, and they have not become popular in biological oceause, and from Richardson and Verheye (1998) and from Hurtt and Armstrong (1999). The first shows measures of copepod egg production at different temperatures and chlorophyll concentrations (a measure of available food). The variations are more prominent than the trends, with just hints that there are relationships. Richardson and Verheye did not fit a function to the data at various temperatures, although the greatest production rates mostly were in the middle of the observed range. Some workers would have added a distribution function. They did fit an Ivlev curve to the chlorophyll data, a single value of the response variable (egg output) for each value of the phytoplankton abundance measure. Its predictive value is small.
The second shows the output of a modestly elaborate pelagic ecosystem model intended to represent the seasonal cycling of phytoplankton stocks. That is really just a function which issues one value of the quanity of phyching ton for each set fys we will examine several such previous stock abundance. We ware extrong were satisfied with this result, which does pass through the central tendency of the actual data from the model. Sometimes the do approximations.

A note on biological terminology

Biological vocabulary has been undergoing a transformaBiological vocabulary has been undergoing a transforma-
tion, some of it driven by results from molecular genetics that have revised the understanding of phylogenetic relaries within all subsets of the eukaryotes have recently been subject to recurring revision, as data revealing their phylosubjectic relationships continue to accumulate Stable systematics remain well ahead in the future. Mostly we will

Fig. 1.8 Two examples of deterministic relationships fitted to marine ecological data affected by strong variation; the data were scattered by stochastic factors not considered by the deterministic models that are simplifying "best fits". (a) Egg production of Calanus agullenssis at dififerent temperatures and chlorophyll concentrations in the Benguela coastal upwelling region. (AAtter Richardson \& Verheye 1998.) (b) Results from a pelagic ecosystem model simiar to those
described in Chapter 4 . The two lines compare the chlorophyll concentration outputs from model versions generated by two modestly different fiting routines actual chlorophyll concentration measures in several years (different symbols) at $59^{\circ} \mathrm{N}$, $19^{\circ} \mathrm{W}$ in the Norwegian Sea compared with field time-series data (points) (After Hurtt \& Armstrong 1999).
use quite classical category names that should remain recognizable, for example the usual names of zoological phyla. The vocabulary transformation has cast clouds of uncertainty around terms such as bacteria, protozoa, plant, and animal. We will only refer to multicellular, rooted, autotrophic organisms, not including large algae, as "plants". In common parlance, animals are heterotrophs, eating plants, fungi, and other animals. For protists making their living in that manner, we will sometimes use the word protozoa, meaning "simple animals", also "protozoan". We are aware that those are not considered taxonomic terms, but they are more direct than, say, "microheterotroph". some "rotists function as both auto- and heterotrophs, that

photosynthesis or heterotrophy, they may be lumped with phytoplankton or protozoa. We intend to use "bacteria" only for eubacteria and "archaea" for that group quite recently recognized as profoundly distinct.

Conclusion

There are more fundamental aspects of seawater chemistry and physics, of the layout and motion of the oceans on the Earth, of "eco-math" that has roles in biological oceanography, but the introduction here should be sufficient preparation for studying the more interesting topics just ahead. he aide. the ride.

Chapter 2

The phycology of phytoplankton

hytoplankon are the assemblage of photoautotrophic microorganisms making up the first trophic level of pelagic food chains. All belong to the botanical categories grouped as algae and studied by "phycologits". Compared to the roughly quarter million species of plants in terrestrial habitats, we find very few species of algae in the plankton, about 5000 (Tett \& Barton 1995). Similar comparisons hold for zooplankton and fish, and an explanation will be sought below in the treatment of pelagic biogeography. Planktonic algae are classified into both ecological and botanical groups, sets associated functionally or taxonomically. We will mix those groupings in our study of what these algae are like. Representatives of most of the major algal divisions live as plankton. Divisions, the largest unts of algal and plant clasification and alo gist's phyla, are de we will focus on a few ecologically chemical citeri. We whe exactly paralel to the dominant srous x 2.1
The relative importance of phytoplankton groups aries with the ecological situation. The importance of the smaller phytoplankton has only been recognized cred until after 1979. We will examine each of these groups in considerable biological detail because of their large role in oceanic ecology. Often biological oceanographers must take off their ocean ecologist caps and put on marine
ab T-shirts to masquerade as marine biologists. We'll do that now.

Evolution of phytoplankton

Globally, cyanobacteria and microalgae dominate marine photosynthesis. Cyanobacteria evolved about 2.85 billion years ago (Falkowski et al. 2004) and are simple prokaryotic cells without a membrane-bound nucleus or other cellular organelles. The microalgae are also single-celled organisms but have a more complex cell stre. Thetic
 prok (Plate 21; Parker et al 2008) Microalge comprising the variou proups were formed by three types of these endosymbioses. In a primary endosymbiosis, a cyanobacterium was acquired by a heterotrophic eukaryote In a secondary endosymbiosis, a eukaryotic heterotroph acquired a photosynthetic eukaryote. In a tertiary symbiosis, a dinoflagellate host engulfed a secondary endosymbiont, that provided its chloroplast to the dinoflagellate. The clue to this is that pigments and genes of the transferred chloroplasts match those of extant eukaryotic algae (Keeling 2010). In all of these symbioses, some or all genes from the chloroplasts were eventually transferred to the host nucleus.

