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The availability of iron controls primary productivity in large areas of the Southern Ocean.

Iron is largely supplied via atmospheric dust deposition, melting ice, the weathering of

shelf sediments, upwelling, sediment resuspension, mixing (deep water, biogenic, and

vertical mixing) and hydrothermal vents with varying degrees of temporal and spatial

importance. However, large areas of the Southern Ocean are remote from these sources,

leading to regions of low primary productivity. Recent studies suggest that recycling of

iron by animals in the surface layer could enhance primary productivity in the Southern

Ocean. The aim of this review is to provide a quantitative and qualitative assessment of

the current literature on pelagic iron recycling by marine animals in the Southern Ocean

and highlight the next steps forward in quantifying the retention and recycling of iron by

higher trophic levels in the Southern Ocean. Phytoplankton utilize the iron in seawater

to meet their metabolic demand. Through grazing, pelagic herbivores transfer the iron

in phytoplankton cells into their body tissues and organs. Herbivores can recycle iron

through inefficient feeding behavior that release iron into the water before ingestion, and

through the release of fecal pellets. The iron stored within herbivores is transferred to

higher trophic levels when they are consumed. When predators consume iron beyond

their metabolic demand it is either excreted or defecated. Waste products from pelagic

vertebrates can thus contain high concentrations of iron which may be in a form that

is available to phytoplankton. Bioavailability of fecal iron for phytoplankton growth is

influenced by a combination of the size of the fecal particle, presence of organic ligands,

the oxidation state of the iron, as well as biological (e.g., remineralization, coprochaly,

coprorhexy, and coprophagy) and physical (e.g., dissolution, fragmentation) processes

that lead to the degradation and release of fecal iron. The flux of dissolved iron from

pelagic recycling is comparable to other sources in the region such as atmospheric dust,

vertical diffusivity, vertical flux, lateral flux and upwelling, but lower than sea ice, icebergs,

sediment resuspension, and deep winter mixing. The temporal and seasonal importance

of these various factors requires further examination.
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INTRODUCTION

The ocean is a major sink of anthropogenic carbon dioxide (CO2)
which occurs through a combination of the physical and the
biological carbon pumps. Cold surface seawaters enhance the
solubility of atmospheric CO2 into the ocean. In the Southern
Ocean, the cold seawater south of the Polar Front mixes with the
warmer waters in the sub-Antarctic region and sink, transporting
the CO2 to the deep ocean and thereby removing it from the
atmosphere (Khatiwala et al., 2009, 2013). The fixation of CO2

into deep-sinking particulate organic carbon (POC), known as
the biological pump, can globally remove an estimated 10× 1012

kg of carbon from the pelagic zone each year (Falkowski et al.,
1998; Buesseler and Boyd, 2009; Passow and Carlson, 2012).

Our understanding of the processes that regulate the solubility
of CO2 in seawater is relatively well constrained. In contrast,
the biological carbon pump is less well understood. This is
because many of the mechanisms underpinning key process
such as the retention, uptake, recycling, remineralization and
export of nutrients such as iron (Fe) and carbon are spatially
and temporally variable (Boyd et al., 2017). Primary production
depends on the availability of light, CO2 and the presence of a
wide range of nutrients such as: Fe and manganese (Mn) for
carbon fixation, zinc (Zn), cadmium (Cd), and cobalt (Co) for
CO2 acquisition, Zn and Cd for silica uptake by large diatoms’
Co and Zn as calcifiers, Fe for nitrogen (N2) fixation, copper (Cu)
and Fe for nitrification, denitrification and organic N utilization,
Zn for organic phosphorus (P) utilization, Fe for synthesis
of photopigments, and Cu for methane oxidation (Morel and
Price, 2003; Morel et al., 2003). However, the scarcity of some
micronutrients such as Fe can limit primary productivity across
large areas of the ocean, thereby reducing the efficiency of the
biological carbon pump (Martin, 1990; Martin et al., 1990; Bowie
et al., 2001; Blain et al., 2007; Boyd et al., 2007, 2017). The aim
of this review is to qualitatively and quantitatively assess the
role of marine animals such as herbivores and their predators in
recycling Fe in the Fe-limited Southern Ocean and propose key
future steps in examining the role of higher trophic levels on the
marine Fe and carbon cycle.

Sources of Iron to Southern Ocean Surface
Waters
The predominant supply of Fe into the ocean has been considered
to be from the deposition of atmospheric dust from the
surrounding continents (Boyd et al., 2004; Jickells et al., 2005;
Cassar et al., 2007). However, the importance of atmospheric
Fe deposition is regionally variable. For example, atmospheric
Fe blown from the Sahara Desert is a major source of Fe in
the Atlantic Ocean and Mediterranean Sea (Guieu et al., 2002;
Sarthou et al., 2003). In contrast, atmospheric dust is a less
important source of Fe in the Southern Ocean, with an estimated
dissolved Fe contribution of 0.00027–0.05 µmol m−2 day−1

(Table 1). This is because Antarctica is ice-covered, which greatly
reduces access to sources of dust, and circumpolar winds and
currents isolate much of the Southern Ocean from the other
continents further north.

TABLE 1 | Flux of dissolved iron (µmol m−2 day−1) from various sources in the

Southern Ocean.

Source Flux (µmol m−2 day−1) References

Blue whales and krill 0.03 Ratnarajah et al., 2016a

Antarctic krill 0.002–0.076 Tovar-Sanchez et al., 2007;

Schmidt et al., 2011

Atmospheric dust 0.00027–0.05 Duce and Tindale, 1991; Lefèvre

and Watson, 1999; Fung et al.,

2000; Bowie et al., 2001, 2015;

Mahowald et al., 2005; Wagener

et al., 2008; Lancelot et al., 2009

Sea ice 0.3 Lannuzel et al., 2007

Icebergs 0.19 Lancelot et al., 2009

Sediment resuspension 0.1–2 Moore et al., 2004; Blain et al.,

2007; Dulaiova et al., 2009

Vertical diffusivity 0.007–0.093 Boyd et al., 2005; Bowie et al.,

2009, 2015

Vertical flux 0.004–0.031 Blain et al., 2007; Charette et al.,

2007

Lateral flux 0.064–0.39 Charette et al., 2007

Upwelling 0.02–0.33 de Baar et al., 1995; Watson,

2001; Lannuzel et al., 2007;

Bowie et al., 2015

Deep winter mixing 0.02–0.09 Tagliabue et al., 2014

More than 40% of the Southern Ocean is seasonally covered
by sea ice, which is a significant source of Fe during spring melt,
stimulating much of the productivity observed from satellites.
Sea ice forms as the seawater temperature drops below −1.86◦C,
whilst incorporating the Fe from seawater into the ice. The
spring-time melting of sea ice (Sedwick and Di Tullio, 1997;
Lannuzel et al., 2007), ice shelves (Herraiz-Borreguero et al.,
2016), and icebergs (Smith et al., 2007; Lancelot et al., 2009; Lin
et al., 2011; Duprat et al., 2016) release the trapped Fe into the
surface waters. Other sources of Fe can include: hydrothermal
vents (Tagliabue et al., 2010; Klunder et al., 2011), upwelling (de
Baar et al., 1995; Watson, 2001), deep winter mixing (Tagliabue
et al., 2014), biogenic mixing (Katija and Dabiri, 2009; Katija,
2012), vertical mixing (Webb and Suginohara, 2001; Cisewski
et al., 2005; Frants et al., 2013), the weathering of shelf sediments
(Sedwick et al., 2008; Bowie et al., 2009), sediment resuspension
(Moore et al., 2004; Blain et al., 2007; Dulaiova et al., 2009) and
pelagic recycling (Tovar-Sanchez et al., 2007; Ortega-Retuerta
et al., 2009; Schmidt et al., 2011, 2016; Lehette et al., 2012;
Ratnarajah et al., 2014, 2016a,b, 2017; Wing et al., 2014, 2017;
Shatova et al., 2016; Laglera et al., 2017).

Using a combination of models and point-source
observations, studies have attempted to estimate the flux of
dissolved Fe from these various sources into the Southern Ocean
(Table 1). These flux estimates are highly localized, do not
represent a constant daily flux, and the calculated upper limits
will only be realized close to their respective sources. Therefore,
localized flux estimates are not easily extrapolated to basin scales.
However, as a localized source, the flux of fecal derived dissolved
Fe from baleen whales and Antarctic krill are comparable to
other sources in the region such as atmospheric dust, vertical
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diffusivity, vertical flux, lateral flux and upwelling, but lower than
sea ice, icebergs, sediment resuspension, and deep winter mixing
(Table 1).

Overview of Pelagic Iron Recycling by
Marine Animals
Uptake of Fe by phytoplankton occurs within the euphotic zone
over spring and summer (Figure 1). Microzooplankton such as
flagellates and ciliates graze on phytoplankton in the euphotic
zone (Safi et al., 2007; Pearce et al., 2011; Yang E. J. et al.,
2016), whilst invertebrate herbivores such as krill, salps, copepods
actively graze on phytoplankton andmicrozooplankton (Schmidt
et al., 2014; Dupuy et al., 2016; Schmidt and Atkinson, 2016; Yang
G. et al., 2016). Some of the nutrients ingested by herbivores
is retained to satisfy their metabolic demands (e.g., Cu for
respiratory pigment in crustaceans; Spicer and Saborowski,
2010, ammonia/ammonium for neutral buoyancy in diapausing
calanoid copepods; Sartoris et al., 2010). Herbivores recycle
nutrients during feeding through inefficiencies in the feeding
behavior (sloppy feeding) and via the excretion/defecation of
excess nutrients.

The sloppy feeding during grazing by copepods and
microzooplankton have been shown to release Fe and Fe-
binding ligands into the water column (Sato et al., 2007; Sarthou
et al., 2008; Laglera et al., 2017). This Fe might be available to
primary producers (Figure 1). Excess nutrients beyondmetabolic
demand of zooplankton is ejected from their body by excretion
or defecation (Tovar-Sanchez et al., 2007; Ortega-Retuerta et al.,
2009; Ruiz-Halpern et al., 2011; Schmidt et al., 2011, 2016; Lehette
et al., 2012; Ratnarajah et al., 2016b). For instance, Antarctic
krill consume phytoplankton and process the ingested Fe within
their digestive organs and muscle (Nicol et al., 2010; Schmidt
et al., 2011, 2016; Ratnarajah et al., 2016b). Only two studies
have measured the Fe concentrations in krill digestive organs,
reporting a range from 13 to 2,783mg kg−1 dry weight, with the
variability likely driven by a combination of seasonal and regional
differences in sampling, reflecting differences in the quantity and
quality of their diet (Ratnarajah et al., 2016b; Schmidt et al., 2016).

A fraction of the Fe ingested by krill is retained in their
muscle, with excess Fe being released in their fecal pellets
(Nicol et al., 2010; Schmidt et al., 2011, 2016; Ratnarajah et al.,
2016b). Additionally, excretion by Antarctic krill can release a
portion of their ingested Fe. Experiments have suggested that krill
excretion could increase total Fe concentrations in the seawater
by 0.2–4.3 nM Fe L−1 d−1 (Tovar-Sanchez et al., 2007). Other
Southern Ocean herbivores will have different effects on Fe
cycling. For example, salp (Salpa thompsoni) fecal pellets appear
to be retained in the upper 300m of the water. Although these
pellets contain high levels of Fe, they are highly refractory and do
not release dissolved Fe via physicochemical pathways (Cabanes
et al., 2017). Therefore, grazing by salps may lead to the depletion
of Fe from surface seawater, with an estimated dissolved Fe export
flux of 11.3 nmol Fe m−2 d−1 at 300m (Cabanes et al., 2017).
In addition, the large populations of pelagic herbivores in the
SouthernOcean contain a significant amount of Fe in their bodies
(Nicol et al., 2010). This Fe is unavailable to phytoplankton but

can be released by excretion and defecation after the herbivores
have been consumed by carnivores. Some herbivores are long-
lived and can store Fe in their bodies between seasons and
because they can swim, they retain this Fe in the pelagic zone.

The varying density and sinking rate of the fecal pellets
of herbivores is a function of their size and shape and this
results in species-specific differences in pellet retention in surface
waters vs. export to deeper waters (Bruland and Silver, 1981;
Turner, 2002, 2015). Although physicochemical processes may
not degrade fecal pellets, biological processes such as coprorhexy
(fragmentation of pellets), coprophagy (ingestion of pellets)
and coprochaly (loosening of pellets) by other pelagic species,
and bacterial degradation via the free-living in situ bacterial
community or internal gut bacteria could remineralize the fecal
pellets and may constitute an important component of nutrient
recycling within the mixed layer (see reviews by Turner, 2002,
2015).

In addition, to their role in biological degradation processes,
many herbivorous organisms undertake seasonal and diurnal
vertical migration from the euphotic zone into deep waters which
may redistribute nutrients. The deep ocean is richer in Fe than
the surface waters (Bucciarelli et al., 2001; Boyd and Ellwood,
2010; Tagliabue et al., 2014). Such migratory movements have the
potential to influence the transport of nutrients from the surface
to the deep ocean, and vice versa (Smetacek and Nicol, 2005;
Smetacek, 2008; Schmidt et al., 2011). For example, although
most of the biomass of Antarctic krill is located within the
upper 150m of the water column (Demer and Hewitt, 1995;
Lascara et al., 1999), Antarctic krill have been shown to actively
feed at the seabed (Clarke and Tyler, 2008), thus influencing
the vertical transfer of “new” Fe from the seafloor (Schmidt
et al., 2011). However, vertically migrating herbivores would only
influence the transfer of Fe if they ingest Fe at depth and release
excretory products within the euphotic zone. Conversely, vertical
migration by animals transfer carbon, Fe and other nutrients to
the deep ocean and this may remain there if the animals are
consumed or if the nutrients are released at depth (Schnetzer
and Steinberg, 2002; Street and Payton, 2005). Vertical migration
by animals can therefore either contribute to the enhancement
or depletion of nutrient concentrations in the surface layer,
depending on a range of temporal and spatial variables as well
as the mix of species present.

The larger carnivores (e.g., seabirds, seals, whales etc.)
consume the pelagic herbivores and some of the smaller
carnivores, thereby transferring the nutrients from one trophic
level onto the next. What happens next is dependent on the
nature of the larger carnivore. Air breathing carnivores are linked
to the surface so they release nutrients in the euphotic zone, or to
their land-based colonies in the case of seals and seabirds. Some
vertebrates and squid feed at great depth and can release their
accumulated nutrients near the surface. This group of animals
inexorably draws nutrients closer to the surface. Such recycling
of excess nutrients that were ingested but not assimilated has
been demonstrated in seabirds (Wing et al., 2014, 2017; Shatova
et al., 2016), as well as land and pelagic dwellingmarinemammals
(Smetacek and Nicol, 2005; Nicol et al., 2010; Ratnarajah et al.,
2014, 2017; Wing et al., 2014). Vertebrate fecal material has been
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FIGURE 1 | Conceptual diagram on the potential contribution of marine animals to the cycling of iron in the Southern Ocean.

linked to Fe enrichments within their local environment and
this can stimulate phytoplankton growth (Shatova et al., 2016).
Mesopelagic predators, such as squid and some fish species, on
the other hand, spend most of their time at depth and only
approach the euphotic zone sporadically. This group of animals
may absorb their nutrients near the surface and draw them
down to depth, however, no published studies have examined
the relative contribution of mesopelagic predators to the cycling
and/or export of Fe in the water column. Once again, the nature
of the animal populations, the time of year and the location will
all affect the magnitude and direction of nutrient cycling.

Iron Bioavailability
Not all Fe present in seawater is considered bioavailable.
Bioavailability of Fe is influenced by the size and nature
of the Fe particles, the complexation of certain forms of
dissolved Fe by organic ligands, and by the oxidation state,
with different phytoplankton classes able to access different
chelated Fe species. The size fractionation between dissolved
and particulate (operational cut-off of 0.2 or 0.4µm) phases
is the most commonly used as an approximation of element
bioavailability, with dissolved Fe being considered as the most
accessible form for biological uptake despite the particulate Fe
fraction being the dominant pool of total Fe in the water column
(de Baar and de Jong, 2001; Boyd and Ellwood, 2010; Lannuzel
et al., 2011). The dissolved Fe pool can be further partitioned
into two smaller fractions, soluble Fe (<0.02µm) and colloidal
Fe (between 0.02µm and 0.2 or 0.4µm). The relative importance
of these fractions is uncertain. Wu et al. (2001) demonstrated
that the soluble fraction may be more bioavailable than the more
chemically dynamic colloidal fraction, while Honeyman and
Santschi (1989) demonstrated that the colloidal fraction could
aggregate into larger particles and settle from the water column.

Fecal material released from marine animals span the
dissolved to particulate size continuum (Figure 2). Some

animals, such as copepods and krill, release fecal pellets bound
within a peritrophic membrane, others defecate fecal material
with a pulp-like consistency (e.g., seabird guano), or a liquid
slurry at/close to the sea surface (e.g., whales) (Figure 2).
Laboratory dissolution experiments of whale fecal material using
natural seawater suggests that Fe continues to leach from the
fecal particles over a 12 h time period (Ratnarajah et al., 2017).
Despite the high Fe concentrations measured in krill (Schmidt
et al., 2011, 2016; Ratnarajah et al., 2016b), seabird (Wing et al.,
2014, 2017; Shatova et al., 2016) and whale (Nicol et al., 2010;
Ratnarajah et al., 2014, 2017; Wing et al., 2014), fecal material
bioavailability of the fecal Fe will depend on the size of the
fecal particle, and/or the dissolution of fecal particles over time.
In comparison, salp fecal pellets contain high concentrations of
Fe, but the pellets are highly refractory (Cabanes et al., 2017).
The peritrophic membrane may prevent the degradation of
fecal pellets (Turner, 2002). Consequently, the consistency of
fecal material will influence the potential bioavailability, where
dissolved material may be favored over particulate material,
however the dissolution of the particulate fraction in seawater,
and microbial degradation may render this fraction bioavailable
for uptake.

Complexation by some organic ligands also enhances the
bioavailability of Fe for phytoplankton uptake (Gledhill and van
den Berg, 1994; Boye et al., 2001, 2010; Hunter and Boyd, 2007;
Hassler and Schoemann, 2009; Hassler et al., 2011a,b, 2012;
Strzepek et al., 2011; Lannuzel et al., 2015). Organic ligands are
molecules that can be excreted by the biota (e.g., siderophores
are produced by bacteria as a response to Fe stress, Gledhill et al.,
2004; Mawji et al., 2011), or during zooplankton grazing (Sato
et al., 2007; Sarthou et al., 2008), that bind with trace metals
forming stable complexes. More than 99% of the dissolved Fe
in seawater is now known to be associated with strong organic
ligands (Hassler et al., 2012). It remains unclear if marine animals
can also release organic ligands in their fecal material.
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FIGURE 2 | Images demonstrating the consistency of different types of fecal

material: (A) copepod (Calanus propinquus) fecal pellet (credit: Jake Wallis),

(B) Antarctic krill fecal pellet, (C) penguin guano (credit: Louise Emmerson),

and (D) whale fecal material. No copyright permissions were required.

Lastly, the the different oxidation states [Fe(II) or Fe(III)]
influences the solubility of Fe. Fe(II) is considered to be the
more bioavailable fraction because the thermodynamically stable
Fe(III) redox species is less soluble (solubility of 0.07 nM in
seawater of 4◦C, pH 9 and salinity 36; Liu and Millero, 2002).
In oxygen-rich waters, Fe(II) is rapidly oxidized into Fe(III)
by oxygen and hydrogen peroxide. However, Fe(III) can be
reduced to Fe(II) through photochemical reduction of colloidal
Fe (Wells and Mayer, 1991; Rijkenberg et al., 2005) or reduction

of organically bound Fe(III) (Barbeau, 2006; Rijkenberg et al.,
2006). The reoxidation of Fe(II) can occur quite rapidly in
seawater (t1/2 of 93.6min at 4◦C and pH 8; Croot and Laan,
2002). However, in the Southern Ocean, the cold temperatures
(Millero et al., 1987), the presence of organic ligands (Gledhill
and van den Berg, 1994; Boye et al., 2001; Maldonado et al.,
2005; Barbeau, 2006; Hassler et al., 2012; Lannuzel et al., 2015),
and generally low hydrogen peroxide concentrations (Sarthou
et al., 1997) may slow the oxidation rates. At present, there is
no information on the oxidation state of fecal Fe. The acidic
digestion processes within the gut would favor the reduction of
Fe(III) to Fe(II), however as the fecal material is expelled into
an oxygenated environment, Fe(II) could return to an oxidized
Fe(III). This is an area of further study.

Summary and Directions for Future
Research
As discussed above, there is a suite of processes (e.g., grazing,
predation, excretion/defecation, remineralization) involved in
the transfer of Fe from herbivores to large carnivores, and
the subsequent recycling and export of Fe (Figure 1). Pelagic
herbivores appear to have two opposing effects on oceanic
primary productivity. On the one hand, the high biomass
of herbivores in marine ecosystems (Pakhomov et al., 2000;
Atkinson et al., 2009), high grazing pressure on primary
production (Perissinotto, 1997; Walsh et al., 2001; Smetacek
et al., 2004; Sato et al., 2007), rapid gut passage time (Schnetzer
and Steinberg, 2002; Tirelli, 2005; Schmidt and Atkinson, 2016),
coupled with their fast sinking fecal pellets (Turner, 2015),
suggests that herbivores play an important role in the export
of Fe to below the mixed layer. On the other hand, the storage
and release of Fe, and other essential nutrients, within the
mixed layer (Tovar-Sanchez et al., 2007; Ortega-Retuerta et al.,
2009) or through vertical migration (Schmidt et al., 2011)
increases microbial productivity (Arístegui et al., 2014), and
contributes substantially to Fe recycling (Maldonado et al., 2016).
These different findings are likely due to the condition of the
peritrophic membrane in zooplankton fecal pellets that acts
as a protective mechanism, impeding the release of nutrients.
Biological processes such as microbial degradation (Morata and
Seuthe, 2014), and the loosening, fragmentation and ingestion
of fecal pellets by other detritiverous animals (coprochaly,
coprorhexy and coprophagy respectively) (Noji et al., 1991) can
disrupt themembrane and release the incorporated nutrients into
the water column.

The fate of any element ingested by herbivores is determined
by the balance of predation behavior (i.e., surface feeding and
defecating, vs. surface feeding but defecation at depth). As
homeostatic regulation releases elements which are in excess
to requirements, the transfer of Fe between successive trophic
levels will differ from species to species based on their elemental
requirements. Although we have focussed on Fe in this review,
marine animals also recycle other nutrients through their diet
and subsequent defecation such as labile dissolved organic
carbon (DOC) which stimulates the DOC-limited heterotrophic
bacterial community (Ruiz-Halpern et al., 2011; Arístegui et al.,
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2014), macronutrients such as ammonium (Atkinson and
Whitehouse, 2000; Tovar-Sanchez et al., 2009; Whitehouse et al.,
2011; Lehette et al., 2012), and micronutrients such as Cd, Co,
Cu, Zn, and Mn (Tovar-Sanchez et al., 2009; Ratnarajah et al.,
2014), whichmight be important for marine primary production.
In addition, some large predators defecate solely in the water
column (e.g., whales), whilst others may defecate both in the
water during periods of intensive feeding as well as on land and
ice (e.g., seals, penguins etc.). The material defecated on land
and ice could wash into the seawater during periods of sea ice
melt and through strong winds that fractionate and disperse fecal
material into the ocean.

A growing body of literature suggests that biological recycling
by multi-cellular animals is clearly important to primary
production, trophodynamics, and phenology. However, the main
contributors remain to be distinguished and quantified. To date,
multicellular animals have been largely implicated in downward
nutrient transfer but there is increasing evidence that such
animals can also play a role in retaining nutrients in the surface
layer, returning nutrients to the surface waters and exporting
nutrients to different areas of the ocean. Biological recycling
influences the biological carbon pump, but there are some
important questions that need to be answered to determine the
degree to which it does.

The consistency of fecal material, and the length of time that
the fecal particles remain in the mixed layer will influence its
bioavailability for phytoplankton growth. Critical research will
require: determining the fraction of dissolved to particulate Fe
in fecal material, looking for the presence of organic ligands

released through grazing practices or defecation, examining the
response of organic ligands in seawater to fecal derived Fe, and
to the oxidation state of fecal material. It is also essential to
determine the timeframe that fecal pellets or particles remain in
themixed layer before being exported, and what are the biological
(e.g., remineralization, coprochaly, coprorhexy, and coprophagy)
and physical (e.g., dissolution, fragmentation) processes involved
in the degradation and release of fecal Fe during its transit.
Answers to these questions will bring us closer to understanding
if, and how, Fe is retained in the surface layer by marine animals.
Ultimately, it will also be essential to quantify how much of the
carbon taken in by animals is respired back into the atmosphere.
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